
PROJ.4 Documentation
Release 5.0.1

Gerald Evenden, Frank Warmerdam, and others

April 2018

CONTENTS

Contents i

1 Using PROJ 3
1.1 Quick start . 3
1.2 Applications . 4

1.2.1 proj . 4
1.2.2 cct . 7
1.2.3 cs2cs . 8
1.2.4 geod . 11

1.3 Cartographic projection . 13
1.3.1 Units . 14
1.3.2 False Easting/Northing . 14
1.3.3 Longitude Wrapping . 14
1.3.4 Prime Meridian . 14
1.3.5 Axis orientation . 15

1.4 Geodetic transformation . 16
1.4.1 Transformation pipelines . 16
1.4.2 cs2cs paradigm . 18
1.4.3 Grid Based Datum Adjustments . 19

1.5 Environment variables . 20

2 Coordinate operations 23
2.1 Projections . 23

2.1.1 Azimuthal Equidistant . 23
2.1.2 Airy . 24
2.1.3 Aitoff . 24
2.1.4 Mod. Stererographics of Alaska . 24
2.1.5 Apian Globular I . 25
2.1.6 August Epicycloidal . 25
2.1.7 Bacon Globular . 25
2.1.8 Bipolar conic of western hemisphere . 25
2.1.9 Boggs Eumorphic . 26
2.1.10 Bonne (Werner lat_1=90) . 26
2.1.11 Cal Coop Ocean Fish Invest Lines/Stations . 26
2.1.12 Cassini (Cassini-Soldner) . 28
2.1.13 Central Cylindrical . 30
2.1.14 Central Conic . 30
2.1.15 Equal Area Cylindrical . 32
2.1.16 Chamberlin Trimetric . 33
2.1.17 Collignon . 33

i

2.1.18 Craster Parabolic (Putnins P4) . 33
2.1.19 Denoyer Semi-Elliptical . 33
2.1.20 Eckert I . 34
2.1.21 Eckert II . 34
2.1.22 Eckert III . 34
2.1.23 Eckert IV . 34
2.1.24 Eckert V . 35
2.1.25 Eckert VI . 35
2.1.26 Equidistant Cylindrical (Plate Carrée) . 35
2.1.27 Equidistant Conic . 37
2.1.28 Euler . 37
2.1.29 Extended Transverse Mercator . 38
2.1.30 Fahey . 38
2.1.31 Foucaut . 38
2.1.32 Foucaut Sinusoidal . 39
2.1.33 Gall (Gall Stereographic) . 39
2.1.34 Geostationary Satellite View . 40
2.1.35 Ginsburg VIII (TsNIIGAiK) . 42
2.1.36 General Sinusoidal Series . 43
2.1.37 Gnomonic . 43
2.1.38 Goode Homolosine . 43
2.1.39 Mod. Stererographics of 48 U.S. 43
2.1.40 Mod. Stererographics of 50 U.S. 44
2.1.41 Hammer & Eckert-Greifendorff . 44
2.1.42 Hatano Asymmetrical Equal Area . 44
2.1.43 HEALPix . 45
2.1.44 rHEALPix . 47
2.1.45 Interrupted Goode Homolosine . 48
2.1.46 International Map of the World Polyconic . 48
2.1.47 Icosahedral Snyder Equal Area . 48
2.1.48 Kavraisky V . 49
2.1.49 Kavraisky VII . 49
2.1.50 Krovak . 49
2.1.51 Laborde . 50
2.1.52 Lambert Azimuthal Equal Area . 50
2.1.53 Lagrange . 50
2.1.54 Larrivee . 51
2.1.55 Laskowski . 51
2.1.56 Lambert Conformal Conic . 51
2.1.57 Lambert Conformal Conic Alternative . 52
2.1.58 Lambert Equal Area Conic . 52
2.1.59 Lee Oblated Stereographic . 52
2.1.60 Loximuthal . 52
2.1.61 Space oblique for LANDSAT . 53
2.1.62 McBryde-Thomas Flat-Polar Sine (No. 1) . 53
2.1.63 McBryde-Thomas Flat-Pole Sine (No. 2) . 53
2.1.64 McBride-Thomas Flat-Polar Parabolic . 53
2.1.65 McBryde-Thomas Flat-Polar Quartic . 54
2.1.66 McBryde-Thomas Flat-Polar Sinusoidal . 54
2.1.67 Mercator . 54
2.1.68 Miller Oblated Stereographic . 56
2.1.69 Miller Cylindrical . 57
2.1.70 Mollweide . 58
2.1.71 Murdoch I . 58

ii

2.1.72 Murdoch II . 59
2.1.73 Murdoch III . 59
2.1.74 Natural Earth . 59
2.1.75 Nell . 60
2.1.76 Nell-Hammer . 60
2.1.77 Nicolosi Globular . 60
2.1.78 Near-sided perspective . 61
2.1.79 New Zealand Map Grid . 61
2.1.80 General Oblique Transformation . 61
2.1.81 Oblique Cylindrical Equal Area . 62
2.1.82 Oblated Equal Area . 62
2.1.83 Oblique Mercator . 62
2.1.84 Ortelius Oval . 62
2.1.85 Orthographic . 63
2.1.86 Perspective Conic . 63
2.1.87 Polyconic (American) . 63
2.1.88 Putnins P1 . 64
2.1.89 Putnins P2 . 64
2.1.90 Putnins P3 . 64
2.1.91 Putnins P3’ . 64
2.1.92 Putnins P4’ . 65
2.1.93 Putnins P5 . 65
2.1.94 Putnins P5’ . 65
2.1.95 Putnins P6 . 65
2.1.96 Putnins P6’ . 66
2.1.97 Quartic Authalic . 66
2.1.98 Quadrilateralized Spherical Cube . 66
2.1.99 Robinson . 69
2.1.100 Roussilhe Stereographic . 70
2.1.101 Rectangular Polyconic . 70
2.1.102 Sinusoidal (Sanson-Flamsteed) . 70
2.1.103 Swiss. Obl. Mercator . 71
2.1.104 Stereographic . 71
2.1.105 Oblique Stereographic Alternative . 71
2.1.106 Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion) 72
2.1.107 Transverse Central Cylindrical . 72
2.1.108 Transverse Cylindrical Equal Area . 72
2.1.109 Tissot . 72
2.1.110 Transverse Mercator . 73
2.1.111 Two Point Equidistant . 76
2.1.112 Tilted perspective . 77
2.1.113 Universal Polar Stereographic . 77
2.1.114 Urmaev V . 78
2.1.115 Urmaev Flat-Polar Sinusoidal . 78
2.1.116 Universal Transverse Mercator (UTM) . 78
2.1.117 van der Grinten (I) . 79
2.1.118 van der Grinten II . 79
2.1.119 van der Grinten III . 79
2.1.120 van der Grinten IV . 80
2.1.121 Vitkovsky I . 80
2.1.122 Wagner I (Kavraisky VI) . 80
2.1.123 Wagner II . 81
2.1.124 Wagner III . 81
2.1.125 Wagner IV . 81

iii

2.1.126 Wagner V . 81
2.1.127 Wagner VI . 82
2.1.128 Wagner VII . 82
2.1.129 Werenskiold I . 82
2.1.130 Winkel I . 82
2.1.131 Winkel II . 83
2.1.132 Winkel Tripel . 83

2.2 Conversions . 83
2.2.1 Axis swap . 83
2.2.2 Cartesian to geodetic conversion . 84
2.2.3 Lat/long (Geodetic) . 84
2.2.4 Lat/long (Geodetic alias) . 84
2.2.5 Unit conversion . 84

2.3 Transformations . 86
2.3.1 Kinematic datum shifting utilizing a deformation model . 86
2.3.2 Helmert transform . 87
2.3.3 Molodensky transform . 91
2.3.4 Horizontal grid shift . 92
2.3.5 Vertical grid shift . 92

2.4 The pipeline operator . 93
2.4.1 Rules for pipelines . 94

3 Resource files 95
3.1 External resources . 95
3.2 Transformation grids . 96

3.2.1 Free grids . 96
3.2.2 Non-Free Grids . 96
3.2.3 HARN . 98
3.2.4 HTDP . 98

3.3 Init files . 100
3.4 The defaults file . 102

4 Geodesic calculations 103
4.1 Introduction . 103
4.2 Solution of geodesic problems . 103
4.3 Additional properties . 104
4.4 Multiple shortest geodesics . 104
4.5 Background . 105

5 Development 107
5.1 Quick start . 107
5.2 Transformations . 109
5.3 Error handling . 109
5.4 Threads . 109

5.4.1 Key Thread Safety Issues . 109
5.4.2 projCtx . 109
5.4.3 src/multistresstest.c . 110

5.5 Reference . 110
5.5.1 Data types . 110
5.5.2 Functions . 119
5.5.3 Deprecated API . 128

5.6 Using PROJ in CMake projects . 132
5.7 Language bindings . 132

5.7.1 Python . 133

iv

5.7.2 Ruby . 133
5.7.3 TCL . 133
5.7.4 MySQL . 133
5.7.5 Excel . 133
5.7.6 Visual Basic . 133

5.8 Version 4 to 5 API Migration . 133
5.8.1 Background . 133
5.8.2 Code example . 134
5.8.3 Function mapping from old to new API . 136

6 FAQ 137
6.1 Where can I find the list of projections and their arguments? . 137
6.2 How do I build/configure PROJ to support datum shifting? . 138
6.3 How do I debug problems with NAD27/NAD83 datum shifting? . 138
6.4 How do I use EPSG coordinate system codes with PROJ? . 139
6.5 How do I use 3 parameter and 7 parameter datum shifting . 139
6.6 Does PROJ work in different international numeric locales? . 139
6.7 Changing Ellipsoid / Why can’t I convert from WGS84 to Google Earth / Virtual Globe Mercator? . . 140
6.8 Why do I get different results with 4.5.0 and 4.6.0? . 140
6.9 How do I calculate distances/directions on the surface of the earth? 141
6.10 What is the HEALPix projection and how can I use it? . 141
6.11 What is the rHEALPix projection and how can I use it? . 141
6.12 What options does PROJ allow for the shape of the Earth (geodesy)? 142
6.13 What if I want a spherical Earth? . 142
6.14 How do I change the radius of the Earth? How do I use PROJ for work on Mars? 142
6.15 How do I do False Eastings and False Northings? . 143

7 Contributing 145
7.1 Help a fellow PROJ user . 145
7.2 Adding bug reports . 145
7.3 Feature requests . 146
7.4 Write documentation . 146
7.5 Code contributions . 146

7.5.1 Making Changes . 146
7.5.2 Submitting Changes . 147
7.5.3 Coding conventions . 147
7.5.4 Legalese . 147

7.6 Additional Resources . 148
7.7 Acknowledgements . 148

8 Download 149
8.1 Release Notes . 149
8.2 Current Release . 149
8.3 Past Releases . 149
8.4 Binaries . 149

8.4.1 Linux . 149
8.4.2 Docker . 150
8.4.3 Windows . 150

9 Glossary 151

10 License 153

Bibliography 155

v

Index 157

vi

PROJ.4 Documentation, Release 5.0.1

PROJ is a standard UNIX filter function which converts geographic longitude and latitude coordinates into cartesian
coordinates (and vice versa), and it is a C API for software developers to include coordinate transformation in their
own software. PROJ is maintained on GitHub.

Contents 1

http://github.com/OSGeo/proj.4/

PROJ.4 Documentation, Release 5.0.1

2 Contents

CHAPTER

ONE

USING PROJ

The main purpose of PROJ is to transform coordinates from one coordinate reference system to another. This can be
achieved either with the included command line applications or the C API that is a part of the software package.

1.1 Quick start

Coordinate transformations are defined by, what in PROJ terminology is known as, “proj-strings”. A proj-string
describes any transformation regardless of how simple or complicated it might be. The simplest case is projection of
geodetic coordinates. This section focuses on the simpler cases and introduces the basic anatomy of the proj-string.
The complex cases are discussed in Geodetic transformation.

A proj-strings holds the parameters of a given coordinate transformation, e.g.

+proj=merc +lat_ts=56.5 +ellps=GRS80

I.e. a proj-string consists of a projection specifier, +proj, a number of parameters that applies to the projection and,
if needed, a description of a datum shift. In the example above geodetic coordinates are transformed to projected
space with the Mercator projection with the latitude of true scale at 56.5 degrees north on the GRS80 ellipsoid. Every
projection in PROJ is identified by a shorthand such as merc in the above example.

By using the above projection definition as parameters for the command line utility proj we can convert the geodetic
coordinates to projected space:

$ proj +proj=merc +lat_ts=56.5 +ellps=GRS80

If called as above proj will be in interactive mode, letting you type the input data manually and getting a responce
presented on screen. proj works as any UNIX filter though, which means that you can also pipe data to the utility,
for instance by using the echo command:

$ echo 55.2 12.2 | proj +proj=merc +lat_ts=56.5 +ellps=GRS80
3399483.80 752085.60

PROJ also comes bundled with the cs2cs utility which is used to transform from onecoordinate reference system to
another. Say we want to convert the above Mercator coordinates to UTM, we can do that with cs2cs:

$ echo 3399483.80 752085.60 | cs2cs +proj=merc +lat_ts=56.5 +ellps=GRS80 +to
→˓+proj=utm +zone=32
6103992.36 1924052.47 0.00

Notice the +to parameter that seperates the source and destination projection definitions.

If you happen to know the EPSG identifiers for the two cordinates reference systems you are transforming between
you can use those with cs2cs:

3

PROJ.4 Documentation, Release 5.0.1

$ echo 56 12 | cs2cs +init=epsg:4326 +to +init=epsg:25832
231950.54 1920310.71 0.00

In the above example we transform geodetic coordinates in the WGS84 reference frame to UTM zone 32N coordinates
in the ETRS89 reference frame. UTM coordinates

1.2 Applications

Bundled with PROJ comes a set of small command line utilities. The proj program is limited to converting between
geographic and projection coordinates within one datum. The cs2cs program operates similarly, but allows trans-
lation between any pair of definable coordinate systems, including support for basic datum translation. The geod
program provides the ability to do geodesic (great circle) computations.

1.2.1 proj

proj and invproj perform respective forward and inverse transformation of cartographic data to or from cartesian
data with a wide range of selectable projection functions.

Synopsis

proj [-bcCeEfiIlmorsStTvVwW [args]] [+args] file[s]
invproj [-bcCeEfiIlmorsStTwW [args]] [+args] file[s]

Description

The following control parameters can appear in any order

-b Special option for binary coordinate data input and output through standard
→˓input

and standard output. Data is assumed to be in system type double floating point
words. This option is to be used when proj is a son process and allows

→˓bypassing
formatting operations.

-i Selects binary input only (see -b option).

-C Check. Invoke all built in self tests and report. Get more verbose report by
preceding with the -V option).

-I alternate method to specify inverse projection. Redundant when used with
→˓invproj.

-o Selects binary output only (see -b option).

-ta A specifies a character employed as the first character to denote a control
→˓line

to be passed through without processing. This option applicable to ascii
→˓input

only. (# is the default value).

(continues on next page)

4 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

-e string
String is an arbitrary string to be output if an error is detected during data
transformations. The default value is: *\t*. Note that if the -b, -i or -o
options are employed, an error is returned as HUGE_VAL value for both return

→˓values.

-E causes the input coordinates to be copied to the output line prior to printing
→˓the

converted values.

-l[p|P|=|e|u|d]id
List projection identifiers with -l, -lp or -lP (expanded) that can be selected
with +proj. -l=id gives expanded description of projection id. List
ellipsoid identifiers with -le, that can be selected with +ellps, -lu list of
cartesian to meter conversion factors that can be selected with +units or -ld
list of datums that can be selected with +datum.

-r This options reverses the order of the expected input from longitude-latitude
→˓or

x-y to latitude-longitude or y-x.

-s This options reverses the order of the output from x-y or longitude-latitude to
y-x or latitude-longitude.

-S Causes estimation of meridional and parallel scale factors, area scale factor
→˓and

angular distortion, and maximum and minimum scale factors to be listed between
→˓<>

for each input point. For conformal projections meridional and parallel scales
factors will be equal and angular distortion zero. Equal area projections will
have an area factor of 1.

-m mult
The cartesian data may be scaled by the mult parameter. When processing data in
a forward projection mode the cartesian output values are multiplied by mult
otherwise the input cartesian values are divided by mult before inverse

→˓projection.
If the first two characters of mult are 1/ or 1: then the reciprocal value of

→˓mult
is employed.

-f format
Format is a printf format string to control the form of the output values. For
inverse projections, the output will be in degrees when this option is

→˓employed.
The default format is "%.2f" for forward projection and DMS for inverse.

-[w|W]n
N is the number of significant fractional digits to employ for seconds output

→˓(when
the option is not specified, -w3 is assumed). When -W is employed the

→˓fields
will be constant width and with leading zeroes.

-v causes a listing of cartographic control parameters tested for and used by the
program to be printed prior to input data. Should not be used with the -T

(continues on next page)

1.2. Applications 5

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

option.

-V This option causes an expanded annotated listing of the characteristics of the
projected point. -v is implied with this option.

-T ulow,uhi,vlow,vhi,res[,umax,vmax]
This option creates a set of bivariate Chebyshev polynomial coefficients that
approximate the selected cartographic projection on stdout. The values low and
hi denote the range of the input where the u or v prefixes apply to respective
longitude-x or latitude-y depending upon whether a forward or inverse

→˓projection
is selected. Res is an integer number specifying the power of 10 precision of
the approximation. For example, a res of -3 specifies an approximation with an
accuracy better than .001. Umax, and vmax specify maximum degree of the

→˓polynomials
(default: 15).

The +args run-line arguments are associated with cartographic parameters. Usage varies with projection and for a
complete description consult the projection pages

Additional projection control parameters may be contained in two auxiliary control files: the first is optionally ref-
erenced with the +init=file:id and the second is always processed after the name of the projection has been
established from either the run-line or the contents of +init file. The environment parameter PROJ_LIB establishes
the default directory for a file reference without an absolute path. This is also used for supporting files like datum shift
files.

One or more files (processed in left to right order) specify the source of data to be transformed. A - will specify the
location of processing standard input. If no files are specified, the input is assumed to be from stdin. For ASCII input
data the two data values must be in the first two white space separated fields and when both input and output are ASCII
all trailing portions of the input line are appended to the output line.

Input geographic data (longitude and latitude) must be in DMS format and input cartesian data must be in units
consistent with the ellipsoid major axis or sphere radius units. Output geographic coordinates will be in DMS (if the
-w switch is not employed) and precise to 0.001” with trailing, zero-valued minute-second fields deleted.

Example

The following script

proj +proj=utm +lon_0=112w +ellps=clrk66
-r <<EOF
45d15'33.1" 111.5W
45d15.551666667N -111d30
+45.25919444444 111d30'000w
EOF

will perform UTM forward projection with a standard UTM central meridian nearest longitude 112W. The geographic
values of this example are equivalent and meant as examples of various forms of DMS input. The x-y output data will
appear as three lines of:

460769.27 5011648.45

6 Chapter 1. Using PROJ

../projections/index.html

PROJ.4 Documentation, Release 5.0.1

1.2.2 cct

cct a 4D equivalent to the proj projection program, performs transformation coordinate systems on a set of input
points. The coordinate system transformation can include translation between projected and geographic coordinates
as well as the application of datum shifts.

cct is an acromyn meaning Coordinate Conversion and Transformation.

The acronym refers to definitions given in the OGC 08-015r2/ISO-19111 standard “Geographical Information – Spatial
Referencing by Coordinates”, which defines two different classes of coordinate operations:

Coordinate Conversions, which are coordinate operations where input and output datum are identical (e.g. conversion
from geographical to cartesian coordinates) and

Coordinate Transformations, which are coordinate operations where input and output datums differ (e.g. change of
reference frame).

cct, however, also refers to Carl Christian Tscherning (1942–2014), professor of Geodesy at the University of Copen-
hagen, mentor and advisor for a generation of Danish geodesists, colleague and collaborator for two generations of
global geodesists, Secretary General for the International Association of Geodesy, IAG (1995–2007), fellow of the
Amercan Geophysical Union (1991), recipient of the IAG Levallois Medal (2007), the European Geosciences Union
Vening Meinesz Medal (2008), and of numerous other honours.

cct, or Christian, as he was known to most of us, was recognized for his good mood, his sharp wit, his tireless work,
and his great commitment to the development of geodesy – both through his scientific contributions, comprising more
than 250 publications, and by his mentoring and teaching of the next generations of geodesists.

As Christian was an avid Fortran programmer, and a keen Unix connoiseur, he would have enjoyed to know that his
initials would be used to name a modest Unix style transformation filter, hinting at the tireless aspect of his personality,
which was certainly one of the reasons he accomplished so much, and meant so much to so many people.

Hence, in honour of cct (the geodesist) this is cct (the program).

Synopsis

cct [-cotvz [args]]... +opts[=arg]... file...

Description

The following control parameters can appear in any order:

-c x,y,z,t
--columns=x,y,z,t

Specify input columns for (up to) 4 input parameters. Defaults to 1,2,3,4

-o <output file name>
--output=<output file name>

Specify the name of the output file.

-t <time>
--time=<time>

Specify a fixed observation time to be used for all input data.

-z <height>
--height=<height>

Specify a fixed observation height to be used for all input data.

(continues on next page)

1.2. Applications 7

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

-v
--verbose

Write non-essential, but potentially useful, information to stderr.
Repeat for additional information (-vv, -vvv, etc.)

The +args arguments are associated with coordinate operation parameters. Usage varies with operation. For a
complete description consult the projection pages

Examples

1. The operator specs describe the action to be performed by cct. So the following script

echo 12 55 0 0 | cct +proj=utm +zone=32 +ellps=GRS80

will transform the input geographic coordinates into UTM zone 32 coordinates. Hence, the command

echo 12 55 | cct -z0 -t0 +proj=utm +zone=32 +ellps=GRS80

Should give results comparable to the classic proj command

echo 12 55 | proj +proj=utm +zone=32 +ellps=GRS80

2. Convert geographical input to UTM zone 32 on the GRS80 ellipsoid:

cct +proj=utm +ellps=GRS80 +zone=32

3. Roundtrip accuracy check for the case above:

cct +proj=pipeline +proj=utm +ellps=GRS80 +zone=32 +step +step +inv

4. As (2) but specify input columns for longitude, latitude, height and time:

cct -c 5,2,1,4 +proj=utm +ellps=GRS80 +zone=32

5. As (2) but specify fixed height and time, hence needing only 2 cols in input:

cct -t 0 -z 0 +proj=utm +ellps=GRS80 +zone=32

1.2.3 cs2cs

cs2cs performs transformation between the source and destination cartographic coordinate system on a set of input
points. The coordinate system transformation can include translation between projected and geographic coordinates
as well as the application of datum shifts.

8 Chapter 1. Using PROJ

../projections/index.html

PROJ.4 Documentation, Release 5.0.1

Synopsis

cs2cs [-eEfIlrstvwW [args]] [+opts[=arg]] [+to [+opts[=arg]]] file[s]

Description

The following control parameters can appear in any order:

-I method to specify inverse translation, convert from +to coordinate system to
→˓the

primary coordinate system defined.

-ta A specifies a character employed as the first character to denote a control
→˓line

to be passed through without processing. This option applicable to ascii
→˓input

only. (# is the default value).

-e string
String is an arbitrary string to be output if an error is detected during

→˓data
transformations. The default value is: *\t*. Note that if the -b, -i or -o
options are employed, an error is returned as HUGE_VAL value for both
return values.

-E causes the input coordinates to be copied to the output line prior to printing
→˓ the

converted values.

-l[p|P|=|e|u|d]id
List projection identifiers with -l, -lp or -lP (expanded) that can be selected
with +proj. -l=id gives expanded description of projection id. List
ellipsoid identifiers with -le, that can be selected with +ellps,-lu list of
cartesian to meter conversion factors that can be selected with +units or -ld
list of datums that can be selected with +datum.

-r This options reverses the order of the expected input from longitude-latitude
→˓or

x-y to latitude-longitude or y-x.

-s This options reverses the order of the output from x-y or longitude-latitude to
y-x or latitude-longitude.

-f format
Format is a printf format string to control the form of the output values. For
inverse projections, the output will be in degrees when this option is

→˓employed.
If a format is specified for inverse projection the output data will be in

→˓deci-
mal degrees. The default format is "%.2f" for forward projection and DMS for
inverse.

-[w|W]n
N is the number of significant fractional digits to employ for seconds output

→˓(when
the option is not specified, -w3 is assumed). When -W is employed the fields

(continues on next page)

1.2. Applications 9

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

will be constant width and with leading zeroes.

-v causes a listing of cartographic control parameters tested for and used by the
program to be printed prior to input data.

The +args run-line arguments are associated with cartographic parameters. Usage varies with projection and for a
complete description consult the projection pages

The cs2cs program requires two coordinate system definitions. The first (or primary is defined based on all projection
parameters not appearing after the +to argument. All projection parameters appearing after the +to argument are con-
sidered the definition of the second coordinate system. If there is no second coordinate system defined, a geographic
coordinate system based on the datum and ellipsoid of the source coordinate system is assumed. Note that the source
and destination coordinate system can both be projections, both be geographic, or one of each and may have the same
or different datums.

Additional projection control parameters may be contained in two auxiliary control files: the first is optionally ref-
erenced with the +init=file:id and the second is always processed after the name of the projection has been
established from either the run-line or the contents of +init file. The environment parameter PROJ_LIB establishes
the default directory for a file reference without an absolute path. This is also used for supporting files like datum shift
files.

One or more files (processed in left to right order) specify the source of data to be transformed. A - will specify the
location of processing standard input. If no files are specified, the input is assumed to be from stdin. For input data
the two data values must be in the first two white space separated fields and when both input and output are ASCII all
trailing portions of the input line are appended to the output line.

Input geographic data (longitude and latitude) must be in DMS or decimal degrees format and input cartesian data
must be in units consistent with the ellipsoid major axis or sphere radius units. Output geographic coordinates will
normally be in DMS format (use -f %.12f for decimal degrees with 12 decimal places), while projected (cartesian)
coordinates will be in linear (meter, feet) units.

Example

The following script

cs2cs +proj=latlong +datum=NAD83
+to +proj=utm +zone=10 +datum=NAD27

-r <<EOF
45d15'33.1" 111.5W
45d15.551666667N -111d30
+45.25919444444 111d30'000w
EOF

will transform the input NAD83 geographic coordinates into NAD27 coordinates in the UTM projection with zone 10
selected. The geographic values of this example are equivalent and meant as examples of various forms of DMS input.
The x-y output data will appear as three lines of:

1402285.99 5076292.42 0.000

10 Chapter 1. Using PROJ

../projections/index.html

PROJ.4 Documentation, Release 5.0.1

1.2.4 geod

geod (direct) and invgeod (inverse) perform geodesic (“Great Circle”) computations for determining latitude, lon-
gitude and back azimuth of a terminus point given a initial point latitude, longitude, azimuth and distance (direct) or
the forward and back azimuths and distance between an initial and terminus point latitudes and longitudes (inverse).
The results are accurate to round off for |𝑓 | < 1/50, where f is flattening.

invgeod may not be available on all platforms; in this case call geod with the -I option.

Synopsis

geod +ellps=<ellipse> [-afFIlptwW [args]] [+args] file[s]

invgeod +ellps=<ellipse> [-afFIlptwW [args]] [+args] file[s]

Description

The following command-line options can appear in any order:

-I Specifies that the inverse geodesic computation is to be
performed. May be used with execution of geod as an
alternative to invgeod execution.

-a Latitude and longitudes of the initial and terminal
points, forward and back azimuths and distance are output.

-ta A specifies a character employed as the first character
to denote a control line to be passed through without
processing.

-le Gives a listing of all the ellipsoids that may be
selected with the +ellps= option.

-lu Gives a listing of all the units that may be selected
with the +units= option.

-[f|F] format
Format is a printf format string to control the output
form of the geographic coordinate values (f) or distance
value (F). The default mode is DMS for geographic
coordinates and "%.3f" for distance.

-[w|W]n
N is the number of significant fractional digits to
employ for seconds output (when the option is not
specified, -w3 is assumed). When -W is employed the fields
will be constant width with leading zeroes.

-p This option causes the azimuthal values to be output as
unsigned DMS numbers between 0 and 360 degrees. Also
note -f.

The +args command-line options are associated with geodetic parameters for specifying the ellipsoidal or sphere to
use. See proj documentation for full list of these parameters and controls. The options are processed in left to right

1.2. Applications 11

proj.html

PROJ.4 Documentation, Release 5.0.1

order from the command line. Reentry of an option is ignored with the first occurrence assumed to be the desired
value.

One or more files (processed in left to right order) specify the source of data to be transformed. A - will specify the
location of processing standard input. If no files are specified, the input is assumed to be from stdin.

For direct determinations input data must be in latitude, longitude, azimuth and distance order and output will be
latitude, longitude and back azimuth of the terminus point. Latitude, longitude of the initial and terminus point are
input for the inverse mode and respective forward and back azimuth from the initial and terminus points are output
along with the distance between the points.

Input geographic coordinates (latitude and longitude) and azimuthal data must be in decimal degrees or DMS format
and input distance data must be in units consistent with the ellipsoid major axis or sphere radius units. The latitude
must lie in the range [-90d,90d]. Output geographic coordinates will be in DMS (if the -f switch is not employed) to
0.001” with trailing, zero-valued minute-second fields deleted. Output distance data will be in the same units as the
ellipsoid or sphere radius.

The Earth’s ellipsoidal figure may be selected in the same manner as program proj by using +ellps=, +a=, +es=,
etc.

Geod may also be used to determine intermediate points along either a geodesic line between two points or along an arc
of specified distance from a geographic point. In both cases an initial point must be specified with +lat_1=lat and
+lon_1=lon parameters and either a terminus point +lat_2=lat and +lon_2=lon or a distance and azimuth
from the initial point with +S=distance and +A=azimuth must be specified.

If points along a geodesic are to be determined then either +n_S=integer specifying the number of intermediate
points and/or +del_S=distance specifying the incremental distance between points must be specified.

To determine points along an arc equidistant from the initial point both +del_A=angle and +n_A=integer must
be specified which determine the respective angular increments and number of points to be determined.

Examples

The following script determines the geodesic azimuths and distance in U.S. statute miles from Boston, MA, to Portland,
OR:

geod +ellps=clrk66 <<EOF -I +units=us-mi
42d15'N 71d07'W 45d31'N 123d41'W
EOF

which gives the results:

-66d31'50.141" 75d39'13.083" 2587.504

where the first two values are the azimuth from Boston to Portland, the back azimuth from Portland to Boston followed
by the distance.

An example of forward geodesic use is to use the Boston location and determine Portland’s location by azimuth and
distance:

geod +ellps=clrk66 <<EOF +units=us-mi
42d15'N 71d07'W -66d31'50.141" 2587.504
EOF

which gives:

45d31'0.003"N 123d40'59.985"W 75d39'13.094"

12 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

Note: Lack of precision in the distance value compromises the precision of the Portland location.

Further reading

1. GeographicLib.

2. C. F. F. Karney, Algorithms for Geodesics, J. Geodesy 87(1), 43–55 (2013); addenda.

3. A geodesic bibliography.

1.3 Cartographic projection

The foundation of PROJ is the large number of projections available in the library. This section is devoted to the
generic parameters that can be used on any projection in the PROJ library.

Below is a list of PROJ parameters which can be applied to most coordinate system definitions. This table does
not attempt to describe the parameters particular to particular projection types. These can be found on the pages
documenting the individual projections.

Parameter Description
+a Semimajor radius of the ellipsoid axis
+axis Axis orientation
+b Semiminor radius of the ellipsoid axis
+ellps Ellipsoid name (see proj -le)
+k Scaling factor (deprecated)
+k_0 Scaling factor
+lat_0 Latitude of origin
+lon_0 Central meridian
+lon_wrap Center longitude to use for wrapping (see below)
+no_defs Don’t use the /usr/share/proj/proj_def.dat defaults file
+over Allow longitude output outside -180 to 180 range, disables wrapping (see below)
+pm Alternate prime meridian (typically a city name, see below)
+proj Projection name (see proj -l)
+units meters, US survey feet, etc.
+vunits vertical units.
+x_0 False easting
+y_0 False northing

In the sections below most of the parameters are explained in details.

1.3. Cartographic projection 13

https://geographiclib.sourceforge.io
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/geodesic-papers/biblio.html

PROJ.4 Documentation, Release 5.0.1

1.3.1 Units

Horizontal units can be specified using the +units keyword with a symbolic name for a unit (ie. us-ft). Alterna-
tively the translation to meters can be specified with the +to_meter keyword (ie. 0.304800609601219 for US feet).
The -lu argument to cs2cs or proj can be used to list symbolic unit names. The default unit for projected coordi-
nates is the meter. A few special projections deviate from this behaviour, most notably the latlong pseudo-projection
that returns degrees.

Vertical (Z) units can be specified using the +vunits keyword with a symbolic name for a unit (ie. us-ft). Alter-
natively the translation to meters can be specified with the +vto_meter keyword (ie. 0.304800609601219 for US
feet). The -lu argument to cs2cs or proj can be used to list symbolic unit names. If no vertical units are specified,
the vertical units will default to be the same as the horizontal coordinates.

Note: proj do not handle vertical units at all and hence the +vto_meter argument will be ignored.

Scaling of output units can be done by applying the +k_0 argument. The returned coordinates are scaled by the value
assigned with the +k_0 parameter.

1.3.2 False Easting/Northing

Virtually all coordinate systems allow for the presence of a false easting (+x_0) and northing (+y_0). Note that these
values are always expressed in meters even if the coordinate system is some other units. Some coordinate systems
(such as UTM) have implicit false easting and northing values.

1.3.3 Longitude Wrapping

By default PROJ wraps output longitudes in the range -180 to 180. The +over switch can be used to disable the
default wrapping which is done at a low level in pj_inv(). This is particularly useful with projections like the
equidistant cylindrical where it would be desirable for X values past -20000000 (roughly) to continue past -180
instead of wrapping to +180.

The +lon_wrap option can be used to provide an alternative means of doing longitude wrapping within
pj_transform(). The argument to this option is a center longitude. So +lon_wrap=180 means wrap lon-
gitudes in the range 0 to 360. Note that +over does not disable +lon_wrap.

1.3.4 Prime Meridian

A prime meridian may be declared indicating the offset between the prime meridian of the declared coordinate system
and that of greenwich. A prime meridian is clared using the “pm” parameter, and may be assigned a symbolic name,
or the longitude of the alternative prime meridian relative to greenwich.

Currently prime meridian declarations are only utilized by the pj_transform() API call, not the pj_inv() and
pj_fwd() calls. Consequently the user utility cs2cs does honour prime meridians but the proj user utility ignores
them.

The following predeclared prime meridian names are supported. These can be listed using with cs2cs -lm.

14 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

Meridian Longitude
greenwich 0dE
lisbon 9d07’54.862”W
paris 2d20’14.025”E
bogota 74d04’51.3”E
madrid 3d41’16.48”W
rome 12d27’8.4”E
bern 7d26’22.5”E
jakarta 106d48’27.79”E
ferro 17d40’W
brussels 4d22’4.71”E
stockholm 18d3’29.8”E
athens 23d42’58.815”E
oslo 10d43’22.5”E

Example of use. The location long=0, lat=0 in the greenwich based lat/long coordinates is translated to lat/long
coordinates with Madrid as the prime meridian.

cs2cs +proj=latlong +datum=WGS84 +to +proj=latlong +datum=WGS84 +pm=madrid
0 0 <i>(input)</i>
3d41'16.48"E 0dN 0.000 <i>(output)</i>

1.3.5 Axis orientation

Starting in PROJ 4.8.0, the +axis argument can be used to control the axis orientation of the coordinate system. The
default orientation is “easting, northing, up” but directions can be flipped, or axes flipped using combinations of the
axes in the +axis switch. The values are:

• “e” - Easting

• “w” - Westing

• “n” - Northing

• “s” - Southing

• “u” - Up

• “d” - Down

They can be combined in +axis in forms like:

• +axis=enu - the default easting, northing, elevation.

• +axis=neu - northing, easting, up - useful for “lat/long” geographic coordinates, or south orientated transverse
mercator.

• +axis=wnu - westing, northing, up - some planetary coordinate systems have “west positive” coordinate
systems

Note: The +axis argument does not work with the proj command line utility.

1.3. Cartographic projection 15

PROJ.4 Documentation, Release 5.0.1

1.4 Geodetic transformation

PROJ can do everything from the most simple projection to very complex transformations across many reference
frames. While originally developed as a tool for cartographic projections, PROJ has over time evolved into a powerfull
generic coordinate transformation engine that makes it possible to do both large scale cartographic projections as well
as coordinate transformation at a geodetic high precision level. This chapter delves into the details of how geodetec
transformations of varying complexity can be performed.

In PROJ, two frameworks for geodetic transformations exists, the cs2cs framework and the transformation pipelines
framework. The first is the original, and limited, framework for doing geodetic transforms in PROJ The latter is a
newer addition that aims to be a more complete transformation framework. Both are described in the sections below.
Large portions of the text are based on [EversKnudsen2017].

Before describing the details of the two frameworks, let us first remark that most cases of geodetic transformations can
be expressed as a series of elementary operations, the output of one operation being the input of the next. E.g. when
going from UTM zone 32, datum ED50, to UTM zone 32, datum ETRS89, one must, in the simplest case, go through
5 steps:

1. Back-project the UTM coordinates to geographic coordinates

2. Convert the geographic coordinates to 3D cartesian geocentric coordinates

3. Apply a Helmert transformation from ED50 to ETRS89

4. Convert back from cartesian to geographic coordinates

5. Finally project the geographic coordinates to UTM zone 32 planar coordinates.

1.4.1 Transformation pipelines

The homology between the above steps and a Unix shell style pipeline is evident. It is there the main architectural
inspiration behind the transformation pipeline framework. The pipeline framework is realized by utilizing a special
“projection”, that takes as its user supplied arguments, a series of elementary operations, which it strings together in
order to implement the full transformation needed. Additionally, a number of elementary geodetic operations, includ-
ing Helmert transformations, general high order polynomial shifts and the Molodensky transformation are available
as part of the pipeline framework. In anticipation of upcoming support for full time-varying transformations, we also
introduce a 4D spatiotemporal data type, and a programming interface (API) for handling this.

The Molodensky transformation converts directly from geodetic coordinates in one datum, to geodetic coordinates in
another datum, while the (typically more accurate) Helmert transformation converts from 3D cartesian to 3D cartesian
coordinates. So when using the Helmert transformation one typically needs to do an initial conversion from geodetic
to cartesian coordinates, and a final conversion the other way round, to arrive at the desired result. Fortunately, this
three-step compound transformation has the attractive characteristic that each step depends only on the output of the
immediately preceding step. Hence, we can build a geodetic-to-geodetic Helmert transformation by tying together
the outputs and inputs of 3 steps (geodetic-to-cartesian → Helmert → cartesian-to-geodetic), pipeline style. The
pipeline driver, makes this kind of chained transformations possible. The implementation is compact, consisting
of just one pseudo-projection, called pipeline, which takes as its arguments strings of elementary projections
(note: “projection” is the, slightly misleading, PROJ term used for any kind of transformation). The pipeline pseudo
projection is supplemented by a number of elementary transformations, all in all providing a framework for building
high accuracy solutions for a wide spectrum of geodetic tasks.

As a first example, let us take a look at the iconic geodetic→ Cartesian→ Helmert→ geodetic case (steps 2 to 4 in
the example in the itroduction). In PROJ it can be implemented as

proj=pipeline
step proj=cart ellps=intl
step proj=helmert

(continues on next page)

16 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

x=-81.0703 y=-89.3603 z=-115.7526
rx=-0.48488 ry=-0.02436 rz=-0.41321 s=-0.540645

step proj=cart inv ellps=GRS80

The pipeline can be expanded at both ends to accommodate whatever coordinate type is needed for input and output:
In the example below, we transform from the deprecated Danish System 45, a 2D system with some tension in the
original defining network, to UTM zone 33, ETRS89. The tension is reduced using a polynomial transformation (the
init=./s45b. . . step, s45b.pol is a file containing the polynomial coefficients), taking the S45 coordinates to a technical
coordinate system (TC32), defined to represent “UTM zone 32 coordinates, as they would look if the Helmert transfor-
mation between ED50 and ETRS89 was perfect”. The TC32 coordinates are then converted back to geodetic(ED50)
coordinates, using an inverse UTM projection, further to cartesian(ED50), then to cartesian(ETRS89), using the rel-
evant Helmert transformation, and back to geodetic(ETRS89), before finally being projected onto the UTM zone 33,
ETRS89 system. All in all a 6 step pipeline, implementing a transformation with centimeter level accuracy from a
deprecated system with decimeter level tensions.

proj=pipeline
step init=./s45b.pol:s45b_tc32
step proj=utm inv ellps=intl zone=32
step proj=cart ellps=intl
step proj=helmert

x=-81.0703 y=-89.3603 z=-115.7526
rx=-0.48488 ry=-0.02436 rz=-0.41321 s=-0.540645

step proj=cart inv ellps=GRS80
step proj=utm ellps=GRS80 zone=33

With the pipeline framework spatiotemporal transformation is possible. This is possible by leveraging the time di-
mension in PROJ that enables 4D coordinates (three spatial components and one temporal component) to be passed
through a transformation pipeline. In the example below a transformation from ITRF93 to ITRF2000 is defined. The
temporal component is given as GPS weeks in the input data, but the 14-parameter Helmert transform expects tem-
poral units in decimalyears. Hence the first step in the pipeline is the unitconvert pseudo-projection that makes sure
the correct units are passed along to the Helmert transform. Most parameters of the Helmert transform are taken from
[AltamimiEtAl2002], except the epoch which is the epoch of the transformation. The default setting is to use “coordi-
nate frame” convention of the Helmert transform, but “position vector” convention can also be used. The last step in
the pipeline is converting the coordinate timestamps back to GPS weeks.

proj=pipeline
step proj=unitconvert t_in=gps_week t_out=decimalyear
step proj=helmert

x=0.0127 y=0.0065 z=-0.0209 s=0.00195
rx=0.00039 ry=-0.00080 rz=0.00114
dx=-0.0029 dy=-0.0002 dz=-0.0006 ds=0.00001
drx=0.00011 dry=0.00019 drz=-0.00007
epoch=1988.0

step proj=unitconvert t_in=decimalyear t_out=gps_week

1.4. Geodetic transformation 17

PROJ.4 Documentation, Release 5.0.1

1.4.2 cs2cs paradigm

Parameter Description
+datum Datum name (see proj -ld)
+geoidgrids Filename of GTX grid file to use for vertical datum transforms
+nadgrids Filename of NTv2 grid file to use for datum transforms
+towgs84 3 or 7 term datum transform parameters
+to_meter Multiplier to convert map units to 1.0m
+vto_meter Vertical conversion to meters

The cs2cs framework delivers a subset of the geodetic transformations available with the pipeline framework. Coordi-
nate transformations done in this framework are transformed in a two-step process with WGS84 as a pivot datum That
is, the input coordinates are transformed to WGS84 geodetic coordinates and then transformed from WGS84 coordi-
nates to the specified output coordinate reference system, by utilizing either the Helmert transform, datum shift grids or
a combination of both. Datum shifts can be described in a proj-string with the parameters +towgs84, +nadgrids
and +geoidgrids. An inverse transform exists for all three and is applied if specified in the input proj-string. The
most common is +towgs84, which is used to define a 3- or 7-parameter Helmert shift from the input reference frame
to WGS84. Exactly which realization of WGS84 is not specified, hence a fair amount of uncertainty is introduced in
this step of the transformation. With the +nadgrids parameter a non-lineaer planar correction derived from interpola-
tion in a correction grid can be applied. Originally this was implemented as a means to transform coordinates between
the american datums NAD27 and NAD83, but corrections can be applied for any datum for which a correction grid
exists. The inverse transform for the horizontal grid shift is “dumb”, in the sense that the correction grid is applied
verbatim without taking into account that the inverse operation is non-linear. Similar to the horizontal grid correction,
+geoidgrids can be used to perform grid corrections in the vertical component. Both grid correction methods
allow inclusion of more than one grid in the same transformation

In contrast to the transformation pipeline framework, transformations with the cs2cs framework are expressed as two
separate proj-strings. One proj-string to WGS84 and one from WGS84. Together they form the mapping from the
source coordinate reference system to the destination coordinate reference system. When used with the cs2cs the
source and destination CRS’s are separated by the special +to parameter.

The following example demonstrates converting from the Greek GGRS87 datum to WGS84 with the +towgs84
parameter.

cs2cs +proj=latlong +ellps=GRS80 +towgs84=-199.87,74.79,246.62
+to +proj=latlong +datum=WGS84

20 35
20d0'5.467"E 35d0'9.575"N 8.570

The EPSG database provides this example for transforming from WGS72 to WGS84 using an approximated 7 param-
eter transformation.

cs2cs +proj=latlong +ellps=WGS72 +towgs84=0,0,4.5,0,0,0.554,0.219 \
+to +proj=latlong +datum=WGS84

4 55
4d0'0.554"E 55d0'0.09"N 3.223

18 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

1.4.3 Grid Based Datum Adjustments

In many places (notably North America and Austrialia) national geodetic organizations provide grid shift files for
converting between different datums, such as NAD27 to NAD83. These grid shift files include a shift to be applied at
each grid location. Actually grid shifts are normally computed based on an interpolation between the containing four
grid points.

PROJ supports use of grid files for shifting between various reference frames. The grid shift table formats are ctable
(the binary format produced by the PROJ nad2bin program), NTv1 (the old Canadian format), and NTv2 (.gsb -
the new Canadian and Australian format).

The text in this section is based on the cs2cs framework. Gridshifting is off course also possible with the pipeline
framework. The major difference between the two is that the cs2cs framework is limited to grid mappings to WGS84,
whereas with transformation pipelines it is possible to perform grid shifts between any two reference frames, as long
as a grid exists.

Use of grid shifts with cs2cs is specified using the +nadgrids keyword in a coordinate system definition. For
example:

% cs2cs +proj=latlong +ellps=clrk66 +nadgrids=ntv1_can.dat \
+to +proj=latlong +ellps=GRS80 +datum=NAD83 << EOF

-111 50
EOF
111d0'2.952"W 50d0'0.111"N 0.000

In this case the /usr/local/share/proj/ntv1_can.dat grid shift file was loaded, and used to get a grid
shift value for the selected point.

It is possible to list multiple grid shift files, in which case each will be tried in turn till one is found that contains the
point being transformed.

cs2cs +proj=latlong +ellps=clrk66 \
+nadgrids=conus,alaska,hawaii,stgeorge,stlrnc,stpaul \

+to +proj=latlong +ellps=GRS80 +datum=NAD83 << EOF
-111 44
EOF
111d0'2.788"W 43d59'59.725"N 0.000

Skipping Missing Grids

The special prefix @ may be prefixed to a grid to make it optional. If it not found, the search will continue to the next
grid. Normally any grid not found will cause an error. For instance, the following would use the ntv2_0.gsb file if
available (see Non-Free Grids), otherwise it would fallback to using the ntv1_can.dat file.

cs2cs +proj=latlong +ellps=clrk66 +nadgrids=@ntv2_0.gsb,ntv1_can.dat \
+to +proj=latlong +ellps=GRS80 +datum=NAD83 << EOF

-111 50
EOF
111d0'3.006"W 50d0'0.103"N 0.000

1.4. Geodetic transformation 19

PROJ.4 Documentation, Release 5.0.1

The null Grid

A special null grid shift file is shift with releases after 4.4.6 (not inclusive). This file provides a zero shift for the
whole world. It may be listed at the end of a nadgrids file list if you want a zero shift to be applied to points outside
the valid region of all the other grids. Normally if no grid is found that contains the point to be transformed an error
will occur.

cs2cs +proj=latlong +ellps=clrk66 +nadgrids=conus,null \
+to +proj=latlong +ellps=GRS80 +datum=NAD83 << EOF

-111 45
EOF
111d0'3.006"W 50d0'0.103"N 0.000

cs2cs +proj=latlong +ellps=clrk66 +nadgrids=conus,null \
+to +proj=latlong +ellps=GRS80 +datum=NAD83 << EOF

-111 44
-111 55
EOF
111d0'2.788"W 43d59'59.725"N 0.000
111dW 55dN 0.000

For more information see the chapter on Transformation grids.

Caveats

• Where grids overlap (such as conus and ntv1_can.dat for instance) the first found for a point will be used
regardless of whether it is appropriate or not. So, for instance, +nadgrids=ntv1_can.dat,conus would
result in the Canadian data being used for some areas in the northern United States even though the conus data is
the approved data to use for the area. Careful selection of files and file order is necessary. In some cases border
spanning datasets may need to be pre-segmented into Canadian and American points so they can be properly
grid shifted

• There are additional grids for shifting between NAD83 and various HPGN versions of the NAD83 datum. Use
of these haven’t been tried recently so you may encounter problems. The FL.lla, WO.lla, MD.lla, TN.lla and
WI.lla are examples of high precision grid shifts. Take care!

• Additional detail on the grid shift being applied can be found by setting the PROJ_DEBUG environment variable
to a value. This will result in output to stderr on what grid is used to shift points, the bounds of the various grids
loaded and so forth

• The cs2cs framework always assumes that grids contain a shift to NAD83 (essentially WGS84). Other types of
grids can be used with the pipeline framework.

1.5 Environment variables

PROJ can be crontrolled by setting environment variables. Most users will have a use for the PROJ_LIB.

On UNIX systems environment variables can be set for a shell-session with:

$ export VAR="some variable"

or it can be set for just one command line call:

$ VAR="some variable" ./cmd

20 Chapter 1. Using PROJ

PROJ.4 Documentation, Release 5.0.1

Environment variables on UNIX are usually removed with the unset command:

$ unset VAR

On windows systems environment variables can be set in the command line with:

> set VAR="some variable"

`VAR will be available for the entire session, unless it is unset. This is done by setting the variable with no content:

> set VAR=

PROJ_LIB
The location of PROJ resource files. It is only possible to specify a single library in PROJ_LIB; e.g. it does not
behave like PATH. PROJ is hardcoded to look for resource files in other locations as well, amongst those are the
users home directory, /usr/share/proj and the current folder.

PROJ_DEBUG
Set the debug level of PROJ. The default debug level is zero, which results in no debug output when using PROJ.
A number from 1-3, whit 3 being the most verbose setting.

1.5. Environment variables 21

PROJ.4 Documentation, Release 5.0.1

22 Chapter 1. Using PROJ

CHAPTER

TWO

COORDINATE OPERATIONS

Coordinate operations in PROJ are divided into three groups: Projections, conversions and transformations. Projec-
tions are purely cartographic mappings of the sphere onto the plane. Technically projections are conversions (according
to ISO standards), though in PROJ projections are distinguished from conversions. Conversions are coordinate oper-
ations that do not exert a change in reference frame. Operations that do exert a change in reference frame are called
transformations.

2.1 Projections

Projections are coordinate operations that are technically conversions but since projections are so fundamental to PROJ
we differentiate them from conversions.

Projections map the spherical 3D space to a flat 2D space.

2.1.1 Azimuthal Equidistant

Classification Azimuthal
Available forms Forward and inverse, spherical and elliptical projection
Implemented by Gerald I. Evenden
Options
+guam Use Guam elliptical formulas. Defaults to false.

23

PROJ.4 Documentation, Release 5.0.1

2.1.2 Airy

Classification
Available forms Forward spherical projection
Defined area Global
Implemented by Gerald I. Evenden
Options
+lat_b
+no_cut Do not cut at hemisphere limit

2.1.3 Aitoff

2.1.4 Mod. Stererographics of Alaska

24 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.5 Apian Globular I

2.1.6 August Epicycloidal

2.1.7 Bacon Globular

2.1.8 Bipolar conic of western hemisphere

2.1. Projections 25

PROJ.4 Documentation, Release 5.0.1

2.1.9 Boggs Eumorphic

2.1.10 Bonne (Werner lat_1=90)

2.1.11 Cal Coop Ocean Fish Invest Lines/Stations

The CalCOFI pseudo-projection is the line and station coordinate system of the California Cooperative Oceanic Fish-
eries Investigations program, known as CalCOFI, for sampling offshore of the west coast of the U.S. and Mexico.

Classification Conformal cylindrical
Available forms Forward and inverse, spherical and elliptical projection
Defined area Only valid for the west coast of USA and Mexico
Implemented by Frank Warmerdam
Options
No special options for this projection

26 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

The coordinate system is based on the Mercator projection with units rotated -30 degrees from the meridian so that they
are oriented with the coastline of the Southern California Bight and Baja California. Lines increase from Northwest
to Southeast. A unit of line is 12 nautical miles. Stations increase from inshore to offshore. A unit of station is equal
to 4 nautical miles. The rotation point is located at line 80, station 60, or 34.15 degrees N, -121.15 degrees W, and
is depicted by the red dot in the figure. By convention, the ellipsoid of Clarke 1866 is used to calculate CalCOFI
coordinates.

The CalCOFI program is a joint research effort by the U.S. National Oceanic and Atmospheric Administration, Uni-
versity of California Scripps Oceanographic Institute, and California Department of Fish and Game. Surveys have
been conducted for the CalCOFI program since 1951, creating one of the oldest and most scientifically valuable joint
oceanographic and fisheries data sets in the world. The CalCOFI line and station coordinate system is now used by
several other programs including the Investigaciones Mexicanas de la Corriente de California (IMECOCAL) program
offshore of Baja California. The figure depicts some commonly sampled locations from line 40 to line 156.7 and
offshore to station 120. Blue numbers indicate line (bottom) or station (left) numbers along the grid. Note that lines
spaced at approximate 3-1/3 intervals are commonly sampled, e.g., lines 43.3 and 46.7.

Usage

A typical forward CalCOFI projection would be from lon/lat coordinates on the Clark 1866 ellipsoid. For example:

proj +proj=calcofi +ellps=clrk66 -E <<EOF
-121.15 34.15
EOF

Output of the above command:

-121.15 34.15 80.00 60.00

The reverse projection from line/station coordinates to lon/lat would be entered as:

proj +proj=calcofi +ellps=clrk66 -I -E -f "%.2f" <<EOF
80.0 60.0
EOF

Output of the above command:

80.0 60.0 -121.15 34.15

Mathematical definition

The algorithm used to make conversions is described in [EberHewitt1979] with a few corrections reported in
[WeberMoore2013].

Further reading

1. General information about the CalCOFI program

2. The Investigaciones Mexicanas de la Corriente de California

2.1. Projections 27

http://www.calcofi.org
http://imecocal.cicese.mx

PROJ.4 Documentation, Release 5.0.1

2.1.12 Cassini (Cassini-Soldner)

Although the Cassini projection has been largely replaced by the Transverse Mercator, it is still in limited use outside
the United States and was one of the major topographic mapping projections until the early 20th century.

Classification Transverse and oblique cylindrical
Available forms Forward and inverse, Spherical and Elliptical
Defined area Global, but best used near the central meridian with long, narrow areas
Implemented by Gerald I. Evenden
Options
+lat_0 Latitude of origin (Default to 0)

Usage

There has been little usage of the spherical version of the Cassini, but the ellipsoidal Cassini-Soldner version was
adopted by the Ordnance Survey for the official survey of Great Britain during the second half of the 19th century
[Steers1970]. Many of these maps were prepared at a scale of 1:2,500. The Cassini-Soldner was also used for the
detailed mapping of many German states during the same period.

Example using EPSG 30200 (Trinidad 1903, units in clarke’s links):

$ echo 0.17453293 -1.08210414 | proj +proj=cass +lat_0=10.44166666666667 +lon_0=-61.
→˓33333333333334 +x_0=86501.46392051999 +y_0=65379.0134283 +a=6378293.645208759
→˓+b=6356617.987679838 +to_meter=0.201166195164 +no_defs
66644.94 82536.22

Example using EPSG 3068 (Soldner Berlin):

$ echo 13.5 52.4 | proj +proj=cass +lat_0=52.41864827777778 +lon_0=13.62720366666667
→˓+x_0=40000 +y_0=10000 +ellps=bessel +datum=potsdam +units=m +no_defs
31343.05 7932.76

28 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Mathematical definition

The formulas describing the Cassini projection are taken from Snyder’s [Snyder1987].

𝜑0 is the latitude of origin that match the center of the map (default to 0). It can be set with +lat_0.

Spherical form

Forward projection

𝑥 = arcsin(cos(𝜑) sin(𝜆))

𝑦 = arctan 2(tan(𝜑), cos(𝜆))− 𝜑0

Inverse projection

𝜑 = arcsin(sin(𝑦 + 𝜑0) cos(𝑥))

𝜆 = arctan 2(tan(𝑥), cos(𝑦 + 𝜑0))

Elliptical form

Forward projection

𝑁 = (1− 𝑒2 sin2(𝜑))−1/2

𝑇 = tan2(𝜑)

𝐴 = 𝜆 cos(𝜑)

𝐶 =
𝑒2

1− 𝑒2
𝑐𝑜𝑠2(𝜑)

𝑥 = 𝑁(𝐴− 𝑇 𝐴
3

6
− (8− 𝑇 + 8𝐶)𝑇

𝐴5

120
)

𝑦 =𝑀(𝜑)−𝑀(𝜑0) +𝑁 tan(𝜑)(
𝐴2

2
+ (5− 𝑇 + 6𝐶)

𝐴4

24
)

and M() is the meridional distance function.

2.1. Projections 29

PROJ.4 Documentation, Release 5.0.1

Inverse projection

𝜑′ =𝑀−1(𝑀(𝜑0) + 𝑦)

if 𝜑′ = 𝜋
2 then 𝜑 = 𝜑′ and 𝜆 = 0

otherwise evaluate T and N above using 𝜑′ and

𝑅 = (1− 𝑒2)(1− 𝑒2𝑠𝑖𝑛2𝜑′)−3/2

𝐷 = 𝑥/𝑁

𝜑 = 𝜑′ − tan𝜑′
𝑁

𝑅
(
𝐷2

2
− (1 + 3𝑇)

𝐷4

24
)

𝜆 =
(𝐷 − 𝑇 𝐷3

3 + (1 + 3𝑇)𝑇 𝐷5

15)

cos𝜑′

Further reading

1. Wikipedia

2. [Snyder1987]

3. EPSG, POSC literature pertaining to Coordinate Conversions and Transformations including Formulas

2.1.13 Central Cylindrical

2.1.14 Central Conic

This is central (centrographic) projection on cone tangent at lat_0 latitude, identical with conic() projection from
mapproj R package.

Classification Conic
Available forms Forward and inverse, spherical projection
Defined area Global, but best used near the standard parallel
Implemented by Lukasz Komsta
Options
+lat_1 Latitude of standard parallel.

30 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Equirectangular_projection
http://www.ihsenergy.com/epsg/guid7.pdf

PROJ.4 Documentation, Release 5.0.1

Usage

This simple projection is rarely used, as it is not equidistant, equal-area, nor conformal.

An example of usage (and the main reason to implement this projection in proj4) is the ATPOL geobotanical grid of
Poland, developed in Institute of Botany, Jagiellonian University, Krakow, Poland in 1970s [Zajac1978]. The grid was
originally handwritten on paper maps and further copied by hand. The projection (together with strange Earth radius)
was chosen by its creators as the compromise fit to existing maps during first software development in DOS era. Many
years later it is still de facto standard grid in Polish geobotanical research.

The ATPOL coordinates can be achieved with with the following parameters:

+proj=ccon +lat_1=52 +lat_0=52 +lon_0=19 +axis=esu +a=6390000 +x_0=330000 +y_0=-350000

For more information see [Komsta2016] and [Verey2017].

Forward projection

𝑟 = cot𝜑0 − tan(𝜑− 𝜑0)

𝑥 = 𝑟 sin(𝜆 sin𝜑0)

𝑦 = cot𝜑0 − 𝑟 cos(𝜆 sin𝜑0)

Inverse projection

𝑦 = cot𝜑0 − 𝑦

𝜑 = 𝜑0 − tan−1(
√︀
𝑥2 + 𝑦2 − cot𝜑0)

𝜆 =
tan−1

√︀
𝑥2 + 𝑦2

sin𝜑0

2.1. Projections 31

PROJ.4 Documentation, Release 5.0.1

Reference values

For ATPOL to WGS84 test, run the following script:

#!/bin/bash
cat << EOF | src/cs2cs -v -f "%E" +proj=ccon +lat_1=52 +lat_0=52 +lon_0=19 +axis=esu
→˓+a=6390000 +x_0=330000 +y_0=-350000 +to +proj=longlat +datum=WGS84 +no_defs
0 0
0 700000
700000 0
700000 700000
330000 350000
EOF

It should result with

1.384023E+01 5.503040E+01 0.000000E+00
1.451445E+01 4.877385E+01 0.000000E+00
2.478271E+01 5.500352E+01 0.000000E+00
2.402761E+01 4.875048E+01 0.000000E+00
1.900000E+01 5.200000E+01 0.000000E+00

Analogous script can be run for reverse test:

cat << EOF | src/cs2cs -v -f "%E" +proj=longlat +datum=WGS84 +no_defs +to +proj=ccon
→˓+lat_1=52 +lat_0=52 +lon_0=19 +axis=esu +a=6390000 +x_0=330000 +y_0=-350000
24 55
15 49
24 49
19 52
EOF

and it should give the following results:

6.500315E+05 4.106162E+03 0.000000E+00
3.707419E+04 6.768262E+05 0.000000E+00
6.960534E+05 6.722946E+05 0.000000E+00
3.300000E+05 3.500000E+05 0.000000E+00

2.1.15 Equal Area Cylindrical

32 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.16 Chamberlin Trimetric

2.1.17 Collignon

2.1.18 Craster Parabolic (Putnins P4)

2.1.19 Denoyer Semi-Elliptical

2.1. Projections 33

PROJ.4 Documentation, Release 5.0.1

2.1.20 Eckert I

𝑥 = 2
√︀
2/3𝜋𝜆(1− |𝜑|/𝜋)

𝑦 = 2
√︀

2/3𝜋𝜑

2.1.21 Eckert II

2.1.22 Eckert III

2.1.23 Eckert IV

𝑥 = 𝜆(1 + 𝑐𝑜𝑠𝜑)/
√
2 + 𝜋

𝑦 = 2𝜑/
√
2 + 𝜋

34 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.24 Eckert V

2.1.25 Eckert VI

2.1.26 Equidistant Cylindrical (Plate Carrée)

The simplest of all projections. Standard parallels (0° when omitted) may be specified that determine latitude of true
scale (k=h=1).

Classification Conformal cylindrical
Available forms Forward and inverse
Defined area Global, but best used near the equator
Implemented by Gerald I. Evenden
Options
+lat_ts Latitude of true scale. Defaults to 0.0
+lat_0 Center of the map : latitude of origin

2.1. Projections 35

PROJ.4 Documentation, Release 5.0.1

Usage

Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds
its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such
as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image
pixel on the map and its corresponding geographic location on Earth.

The following table gives special cases of the cylindrical equidistant projection.

Projection Name (lat ts=) 𝜑0
Plain/Plane Chart 0°
Simple Cylindrical 0°
Plate Carrée 0°
Ronald Miller—minimum overall scale distortion 37°30′

E.Grafarend and A.Niermann 42°
Ronald Miller—minimum continental scale distortion 43°30′

Gall Isographic 45°
Ronald Miller Equirectangular 50°30′

E.Grafarend and A.Niermann minimum linear distortion 61°7′

Example using EPSG 32662 (WGS84 Plate Carrée):

$ echo 2 47 | proj +proj=eqc +lat_ts=0 +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84
→˓+datum=WGS84 +units=m +no_defs
222638.98 5232016.07

Example using Plate Carrée projection with true scale at latitude 30° and central meridian 90°W:

$ echo -88 30 | proj +proj=eqc +lat_ts=30 +lat_0=90w
-8483684.61 13358338.90

Mathematical definition

The formulas describing the Equidistant Cylindrical projection are all taken from Snyder’s [Snyder1987].

𝜑𝑡𝑠 is the latitude of true scale, that mean the standard parallels where the scale of the projection is true. It can be set
with +lat_ts.

𝜑0 is the latitude of origin that match the center of the map. It can be set with +lat_0.

Forward projection

𝑥 = 𝜆 cos𝜑𝑡𝑠

𝑦 = 𝜑− 𝜑0

36 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Inverse projection

𝜆 = 𝑥/𝑐𝑜𝑠𝜑𝑡𝑠

𝜑 = 𝑦 + 𝜑0

Further reading

1. Wikipedia

2. Wolfram Mathworld

2.1.27 Equidistant Conic

2.1.28 Euler

2.1. Projections 37

https://en.wikipedia.org/wiki/Equirectangular_projection
http://mathworld.wolfram.com/CylindricalEquidistantProjection.html

PROJ.4 Documentation, Release 5.0.1

2.1.29 Extended Transverse Mercator

2.1.30 Fahey

2.1.31 Foucaut

38 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.32 Foucaut Sinusoidal

The y-axis is based upon a weighted mean of the cylindrical equal-area and the sinusoidal projections. Parameter
𝑛 = 𝑛 is the weighting factor where 0 <= 𝑛 <= 1.

𝑥 = 𝜆 cos𝜑/(𝑛+ (1− 𝑛) 𝑐𝑜𝑠𝜑)
𝑦 = 𝑛𝜑+ (1− 𝑛) sin𝜑

For the inverse, the Newton-Raphson method can be used to determine 𝜑 from the equation for 𝑦 above. As 𝑛 → 0
and 𝜑→ 𝜋/2, convergence is slow but for 𝑛 = 0, 𝜑 = sin1 𝑦

2.1.33 Gall (Gall Stereographic)

The Gall stereographic projection, presented by James Gall in 1855, is a cylindrical projection. It is neither equal-area
nor conformal but instead tries to balance the distortion inherent in any projection.

Classification Transverse and oblique cylindrical
Available forms Forward and inverse, Spherical
Defined area Global
Implemented by Gerald I. Evenden
Options No special options for this projection

Usage

The need for a world map which avoids some of the scale exaggeration of the Mercator projection has led to some
commonly used cylindrical modifications, as well as to other modifications which are not cylindrical. The earliest
common cylindrical example was developed by James Gall of Edinburgh about 1855 (Gall, 1885, p. 119-123). His
meridians are equally spaced, but the parallels are spaced at increasing intervals away from the Equator. The parallels
of latitude are actually projected onto a cylinder wrapped about the sphere, but cutting it at lats. 45° N. and S., the
point of perspective being a point on the Equator opposite the meridian being projected. It is used in several British
atlases, but seldom in the United States. The Gall projection is neither conformal nor equal-area, but has a blend of
various features. Unlike the Mercator, the Gall shows the poles as lines running across the top and bottom of the map.

Example using Gall Stereographical

2.1. Projections 39

PROJ.4 Documentation, Release 5.0.1

$ echo 9 51 | proj +proj=gall +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
→˓+units=m +no_defs
708432.90 5193386.36

Example using Gall Stereographical (Central meridian 90°W)

$ echo 9 51 | proj +proj=gall +lon_0=90w +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
→˓+units=m +no_defs
7792761.91 5193386.36

Mathematical definition

The formulas describing the Gall Stereographical are all taken from Snyder’s [Snyder1993].

Spherical form

Forward projection

𝑥 =
𝜆√
2

𝑦 = (1 +

√
2

2
) tan(𝜑/2)

Inverse projection

𝜑 = 2arctan(
𝑦

1 +
√
2
2

)

𝜆 =
√
2𝑥

Further reading

1. Wikipedia

2. Cartographic Projection Procedures for the UNIX Environment-A User’s Manual

2.1.34 Geostationary Satellite View

Classification Azimuthal
Available forms Forward and inverse, spherical and elliptical projection
Defined area Global
Implemented by Gerald I. Evenden and Martin Raspaud
Options
+h Satellite height above earth. Required.
+sweep Sweep angle axis of the viewing instrument. Valid options are x and y. Defaults to y.
+lon_0 Subsatellite longitude point.

40 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Gall_stereographic_projection
http://sites.lsa.umich.edu/zhukov/wp-content/uploads/sites/140/2014/08/projection-procedures.pdf

PROJ.4 Documentation, Release 5.0.1

The geos projection pictures how a geostationary satellite scans the earth at regular scanning angle intervals.

Usage

In order to project using the geos projection you can do the following:

proj +proj=geos +h=35785831.0

The required argument h is the viewing point (satellite position) height above the earth.

The projection coordinate relate to the scanning angle by the following simple relation:

scanning_angle (radians) = projection_coordinate / h

Note on sweep angle

The viewing instrument on-board geostationary satellites described by this projection have a two-axis gimbal viewing
geometry. This means that the different scanning positions are obtained by rotating the gimbal along a N/S axis (or y)
and a E/W axis (or x).

2.1. Projections 41

PROJ.4 Documentation, Release 5.0.1

In the image above, the outer-gimbal axis, or sweep-angle axis, is the N/S axis (y) while the inner-gimbal axis, or
fixed-angle axis, is the E/W axis (x).

This example represents the scanning geometry of the Meteosat series satellite. However, the GOES satellite series
use the opposite scanning geometry, with the E/W axis (x) as the sweep-angle axis, and the N/S (y) as the fixed-angle
axis.

The sweep argument is used to tell PROJ which on which axis the outer-gimbal is rotating. The possible values are
x or y, y being the default. Thus, the scanning geometry of the Meteosat series satellite should take sweep as x, and
GOES should take sweep as y.

2.1.35 Ginsburg VIII (TsNIIGAiK)

42 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.36 General Sinusoidal Series

2.1.37 Gnomonic

2.1.38 Goode Homolosine

2.1.39 Mod. Stererographics of 48 U.S.

2.1. Projections 43

PROJ.4 Documentation, Release 5.0.1

2.1.40 Mod. Stererographics of 50 U.S.

2.1.41 Hammer & Eckert-Greifendorff

2.1.42 Hatano Asymmetrical Equal Area

Classification Pseudocylindrical Projection
Available forms Forward and inverse, spherical projection
Defined area Global, but best between standard parallels
Implemented by Gerald I. Evenden
Options
+lat_1 Standard Parallel 1
+lat_2 Standard Parallel 2
+sym Symmetric form used instead of asymmetric

44 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Mathematical Definition

Forward

𝑥 = 0.85𝜆 cos 𝜃

𝑦 = 𝐶𝑦 sin 𝜃

𝑃 (𝜃) = 2𝜃 + sin 2𝜃 − 𝐶𝑝 sin𝜑

𝑃 ′(𝜃) = 2(1 + cos 2𝜃)

𝜃0 = 2𝜑

Condition 𝐶𝑝 𝐶𝑝

if +sym or 𝜑 > 0 1.75859 2.67595
if not +sym and 𝜑 < 0 1.93052 2.43763

For 𝜑 = 0, 𝑦 ← 0, and 𝑥← 0.85𝜆.

Further reading

1. Compare Map Projections

2. Mathworks

2.1.43 HEALPix

Classification Mixed
Available forms Forward and inverse, spherical and elliptical projection
Defined area Global
Implemented by Alex Raichev and Michael Speth
Options
No special options for this projection

2.1. Projections 45

http://map-projections.net/single-view/hatano
http://www.mathworks.com/help/map/hatano.html

PROJ.4 Documentation, Release 5.0.1

The HEALPix projection is area preserving and can be used with a spherical and ellipsoidal model. It was initially
developed for mapping cosmic background microwave radiation. The image below is the graphical representation
of the mapping and consists of eight isomorphic triangular interrupted map graticules. The north and south contains
four in which straight meridians converge polewards to a point and unequally spaced horizontal parallels. HEALPix
provides a mapping in which points of equal latitude and equally spaced longitude are mapped to points of equal
latitude and equally spaced longitude with the module of the polar interruptions.

Usage

To run a forward HEALPix projection on a unit sphere model, use the following command:

proj +proj=healpix +lon_0=0 +a=1 -E <<EOF
0 0
EOF
output
0 0 0.00 0.00

46 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Further reading

1. NASA

2. Wikipedia

2.1.44 rHEALPix

Classification Mixed
Available forms Forward and inverse, spherical and elliptical projection
Defined area Global
Implemented by Alex Raichev and Michael Speth
Options
+north_square Position of the north polar square. Valid inputs are 0–3. Defaults to 0.
+south_square Position of the south polar square. Valid inputs are 0–3. Defaults to 0.

rHEALPix is a projection based on the HEALPix projection. The implementation of rHEALPix uses the HEALPix
projection. The rHEALPix combines the peaks of the HEALPix into a square. The square’s position can be translated
and rotated across the x-axis which is a novel approach for the rHEALPix projection. The initial intention of using
rHEALPix in the Spatial Computation Engine Science Collaboration Environment (SCENZGrid).

2.1. Projections 47

http://healpix.jpl.nasa.gov/
https://en.wikipedia.org/wiki/HEALPix

PROJ.4 Documentation, Release 5.0.1

Usage

To run a rHEALPix projection on a WGS84 ellipsoidal model, use the following command:

proj +proj=rhealpix -f '%.2f' +ellps=WGS84 +south_square=0 +north_square=2 -E << EOF
> 55 12
> EOF
55 12 6115727.86 1553840.13

Further reading

1. NASA

2. Wikipedia

2.1.45 Interrupted Goode Homolosine

2.1.46 International Map of the World Polyconic

2.1.47 Icosahedral Snyder Equal Area

48 Chapter 2. Coordinate operations

http://healpix.jpl.nasa.gov/
https://en.wikipedia.org/wiki/HEALPix

PROJ.4 Documentation, Release 5.0.1

2.1.48 Kavraisky V

2.1.49 Kavraisky VII

2.1.50 Krovak

2.1. Projections 49

PROJ.4 Documentation, Release 5.0.1

2.1.51 Laborde

2.1.52 Lambert Azimuthal Equal Area

2.1.53 Lagrange

50 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.54 Larrivee

2.1.55 Laskowski

2.1.56 Lambert Conformal Conic

2.1. Projections 51

PROJ.4 Documentation, Release 5.0.1

2.1.57 Lambert Conformal Conic Alternative

2.1.58 Lambert Equal Area Conic

2.1.59 Lee Oblated Stereographic

2.1.60 Loximuthal

52 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.61 Space oblique for LANDSAT

2.1.62 McBryde-Thomas Flat-Polar Sine (No. 1)

2.1.63 McBryde-Thomas Flat-Pole Sine (No. 2)

2.1.64 McBride-Thomas Flat-Polar Parabolic

2.1. Projections 53

PROJ.4 Documentation, Release 5.0.1

2.1.65 McBryde-Thomas Flat-Polar Quartic

2.1.66 McBryde-Thomas Flat-Polar Sinusoidal

2.1.67 Mercator

The Mercator projection is a cylindrical map projection that origins from the 15th century. It is widely recognized as
the first regularly used map projection. The projection is conformal which makes it suitable for navigational purposes.

Classification Conformal cylindrical
Available forms Forward and inverse, spherical and elliptical projection
Defined area Global, but best used near the equator
Implemented by Gerald I. Evenden
Options
+lat_ts Latitude of true scale. Defaults to 0.0
+k_0 Scaling factor. Defaults to 1.0

54 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Usage

Applications should be limited to equatorial regions, but is frequently used for navigational charts with latitude of true
scale (+lat_ts) specified within or near chart’s boundaries. Often inappropriately used for world maps since the
regions near the poles cannot be shown [Evenden1995].

Example using latitude of true scale:

$ echo 56.35 12.32 | proj +proj=merc +lat_ts=56.5
3470306.37 759599.90

Example using scaling factor:

echo 56.35 12.32 | proj +proj=merc +k_0=2
12545706.61 2746073.80

Note that +lat_ts and +k_0 are mutually exclusive. If used together, +lat_ts takes precedence over +k_0.

Mathematical definition

The formulas describing the Mercator projection are all taken from G. Evenden’s libproj manuals [Evenden2005].

Spherical form

For the spherical form of the projection we introduce the scaling factor:

𝑘0 = cos𝜑𝑡𝑠

Forward projection

𝑥 = 𝑘0𝜆

𝑦 = 𝑘0 ln

[︂
tan

(︂
𝜋

4
+
𝜑

2

)︂]︂

Inverse projection

𝜆 =
𝑥

𝑘0

𝜑 =
𝜋

2
− 2 arctan

[︁
𝑒−𝑦/𝑘0

]︁

2.1. Projections 55

PROJ.4 Documentation, Release 5.0.1

Elliptical form

For the elliptical form of the projection we introduce the scaling factor:

𝑘0 = 𝑚 (𝜑𝑡𝑠)

where 𝑚 (𝜑) is the parallel radius at latitude 𝜑.

We also use the Isometric Latitude kernel function 𝑡().

Note: m() and t() should be described properly on a separate page about the theory of projections on the ellipsoid.

Forward projection

𝑥 = 𝑘0𝜆

𝑦 = 𝑘0 ln 𝑡 (𝜑)

Inverse projection

𝜆 =
𝑥

𝑘0

𝜑 = 𝑡−1
[︁
𝑒−𝑦/𝑘0

]︁

Further reading

1. Wikipedia

2. Wolfram Mathworld

2.1.68 Miller Oblated Stereographic

56 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Mercator_projection
http://mathworld.wolfram.com/MercatorProjection.html

PROJ.4 Documentation, Release 5.0.1

2.1.69 Miller Cylindrical

The Miller cylindrical projection is a modified Mercator projection, proposed by Osborn Maitland Miller in 1942. The
latitude is scaled by a factor of 4

5 , projected according to Mercator, and then the result is multiplied by 5
4 to retain scale

along the equator.

Classification Neither conformal nor equal area cylindrical
Available forms Forward and inverse spherical
Defined area Global, but best used near the equator
Implemented by Gerald I. Evenden
Options
+lat_0 Latitude of origin (Default to 0)

Usage

The Miller Cylindrical projection is used for world maps and in several atlases, including the National Atlas of the
United States (USGS, 1970, p. 330-331) [Snyder1987].

Example using Central meridian 90°W:

$ echo -100 35 | proj +proj=mill +lon_0=90w
-1113194.91 4061217.24

Mathematical definition

The formulas describing the Miller projection are all taken from Snyder’s manuals [Snyder1987].

Forward projection

𝑥 = 𝜆

𝑦 = 1.25 * ln
[︁
tan

(︁𝜋
4
+ 0.4 * 𝜑

)︁]︁

2.1. Projections 57

PROJ.4 Documentation, Release 5.0.1

Inverse projection

𝜆 = 𝑥

𝜑 = 2.5 * (arctan
[︀
𝑒0.8*𝑦

]︀
− 𝜋

4
)

Further reading

1. Wikipedia

2.1.70 Mollweide

2.1.71 Murdoch I

58 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Miller_cylindrical_projection

PROJ.4 Documentation, Release 5.0.1

2.1.72 Murdoch II

2.1.73 Murdoch III

2.1.74 Natural Earth

Classification Pseudo cylindrical
Available forms Forward and inverse, spherical projection
Defined area Global
Implemented by Bernhard Jenny
Options
No special options for this projection

The Natural Earth projection is intended for making world maps. A distinguishing trait is its slightly rounded corners
fashioned to emulate the spherical shape of Earth. The meridians (except for the central meridian) bend acutely inward
as they approach the pole lines, giving the projection a hint of three-dimensionality. This bending also suggests that

2.1. Projections 59

PROJ.4 Documentation, Release 5.0.1

the meridians converge at the poles instead of truncating at the top and bottom edges. The distortion characteristics of
the Natural Earth projection compare favorably to other world map projections.

Usage

The Natural Earth projection has no special options so usage is simple. Here is an example of an inverse projection on
a sphere with a radius of 7500 m:

$ echo 3500 -8000 | proj -I +proj=natearth +a=7500
37d54'6.091"E 61d23'4.582"S

Further reading

1. Wikipedia

2.1.75 Nell

2.1.76 Nell-Hammer

2.1.77 Nicolosi Globular

60 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Natural_Earth_projection

PROJ.4 Documentation, Release 5.0.1

2.1.78 Near-sided perspective

2.1.79 New Zealand Map Grid

2.1.80 General Oblique Transformation

2.1. Projections 61

PROJ.4 Documentation, Release 5.0.1

2.1.81 Oblique Cylindrical Equal Area

2.1.82 Oblated Equal Area

2.1.83 Oblique Mercator

2.1.84 Ortelius Oval

62 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.85 Orthographic

2.1.86 Perspective Conic

2.1.87 Polyconic (American)

2.1. Projections 63

PROJ.4 Documentation, Release 5.0.1

2.1.88 Putnins P1

2.1.89 Putnins P2

2.1.90 Putnins P3

2.1.91 Putnins P3’

64 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.92 Putnins P4’

2.1.93 Putnins P5

2.1.94 Putnins P5’

2.1.95 Putnins P6

2.1. Projections 65

PROJ.4 Documentation, Release 5.0.1

2.1.96 Putnins P6’

2.1.97 Quartic Authalic

2.1.98 Quadrilateralized Spherical Cube

Classification Azimuthal
Available forms Forward and inverse, elliptical projection
Defined area Global
Implemented by Martin Lambers
Options
+lat_0 Latitude (in degrees) of the view position.
+lon_0 Longitude (in degrees) of the view position.

The purpose of the Quadrilateralized Spherical Cube (QSC) projection is to project a sphere surface onto the six sides
of a cube:

66 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

For this purpose, other alternatives can be used, notably Gnomonic or HEALPix. However, QSC projection has the
following favorable properties:

It is an equal-area projection, and at the same time introduces only limited angular distortions. It treats all cube sides
equally, i.e. it does not use different projections for polar areas and equatorial areas. These properties make QSC
projection a good choice for planetary-scale terrain rendering. Map data can be organized in quadtree structures for
each cube side. See [LambersKolb2012] for an example.

The QSC projection was introduced by [ONeilLaubscher1976], building on previous work by [ChanONeil1975]. For
clarity: The earlier QSC variant described in [ChanONeil1975] became known as the COBE QSC since it was used
by the NASA Cosmic Background Explorer (COBE) project; it is an approximately equal-area projection and is not
the same as the QSC projection.

See also [CalabrettaGreisen2002] Sec. 5.6.2 and 5.6.3 for a description of both and some analysis.

In this implementation, the QSC projection projects onto one side of a circumscribed cube. The cube side is selected
by choosing one of the following six projection centers:

+lat_0=0 +lon_0=0 front cube side
+lat_0=0 +lon_0=90 right cube side
+lat_0=0 +lon_0=180 back cube side
+lat_0=0 +lon_0=-90 left cube side
+lat_0=90 top cube side
+lat_0=-90 bottom cube side

Furthermore, this implementation allows the projection to be applied to ellipsoids. A preceding shift to a sphere is
performed automatically; see [LambersKolb2012] for details.

2.1. Projections 67

PROJ.4 Documentation, Release 5.0.1

Usage

The following example uses QSC projection via GDAL to create the six cube side maps from a world map for the
WGS84 ellipsoid:

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=0 +lon_0=0" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff frontside.tiff

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=0 +lon_0=90" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff rightside.tiff

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=0 +lon_0=180" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff backside.tiff

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=0 +lon_0=-90" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff leftside.tiff

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=90 +lon_0=0" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff topside.tiff

gdalwarp -t_srs "+wktext +proj=qsc +units=m +ellps=WGS84 +lat_0=-90 +lon_0=0" \
-wo SOURCE_EXTRA=100 -wo SAMPLE_GRID=YES -te -6378137 -6378137 6378137 6378137 \
worldmap.tiff bottomside.tiff

Explanation:

• QSC projection is selected with +wktext +proj=qsc.

• The WGS84 ellipsoid is specified with +ellps=WGS84.

• The cube side is selected with +lat_0=... +lon_0=....

• The -wo options are necessary for GDAL to avoid holes in the output maps.

• The -te option limits the extends of the output map to the major axis diameter (from -radius to +radius in both
x and y direction). These are the dimensions of one side of the circumscribing cube.

The resulting images can be laid out in a grid like below.

68 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Further reading

1. Wikipedia

2. NASA

2.1.99 Robinson

2.1. Projections 69

https://en.wikipedia.org/wiki/Quadrilateralized_spherical_cube
https://lambda.gsfc.nasa.gov/product/cobe/skymap_info_new.cfm

PROJ.4 Documentation, Release 5.0.1

2.1.100 Roussilhe Stereographic

2.1.101 Rectangular Polyconic

2.1.102 Sinusoidal (Sanson-Flamsteed)

MacBryde and Thomas developed generalized formulas for sever of the pseudocylindricals with sinusoidal meridians:

𝑥 = 𝐶𝜆(𝑚+ 𝑐𝑜𝑠𝜃)/(𝑚+ 1)

𝑦 = 𝐶𝜃

𝐶 =
√︀

(𝑚+ 1)/𝑛

70 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.103 Swiss. Obl. Mercator

2.1.104 Stereographic

2.1.105 Oblique Stereographic Alternative

2.1. Projections 71

PROJ.4 Documentation, Release 5.0.1

2.1.106 Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)

2.1.107 Transverse Central Cylindrical

2.1.108 Transverse Cylindrical Equal Area

2.1.109 Tissot

72 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.110 Transverse Mercator

The transverse Mercator projection in its various forms is the most widely used projected coordinate system for world
topographical and offshore mapping.

Classification Transverse and oblique cylindrical
Available forms Forward and inverse, Spherical and Elliptical
Defined area Global, but reasonably accurate only within 15 degrees of the central meridian
Implemented by Gerald I. Evenden
Options
+lat_0 Latitude of origin (Default to 0)
+k0 Scale factor at natural origin (Default to 1)

Usage

Prior to the development of the Universal Transverse Mercator coordinate system, several European nations demon-
strated the utility of grid-based conformal maps by mapping their territory during the interwar period. Calculating
the distance between two points on these maps could be performed more easily in the field (using the Pythagorean
theorem) than was possible using the trigonometric formulas required under the graticule-based system of latitude and
longitude. In the post-war years, these concepts were extended into the Universal Transverse Mercator/Universal Polar
Stereographic (UTM/UPS) coordinate system, which is a global (or universal) system of grid-based maps.

The following table gives special cases of the Transverse Mercator projection.

Projection Name Areas Central meridian Zone width Scale
Factor

Transverse Mercator World wide Various less than 6° Vari-
ous

Transverse Mercator
south oriented

Southern Africa 2° intervals E of
11°E

2° 1.000

UTM North hemi-
sphere

World wide equator to 84°N 6° intervals E & W
of 3° E & W

Always 6° 0.9996

UTM South hemi-
sphere

World wide north of 80°S to
equator

6° intervals E & W
of 3° E & W

Always 6° 0.9996

Gauss-Kruger Former USSR, Yugoslavia, Ger-
many, S. America, China

Various, according
to area

Usually less than 6°,
often less than 4°

1.0000

Gauss Boaga Italy Various, according
to area

6° 0.9996

Example using Gauss-Kruger on Germany area (aka EPSG:31467)

2.1. Projections 73

PROJ.4 Documentation, Release 5.0.1

$ echo 9 51 | proj +proj=tmerc +lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y_0=0
→˓+ellps=bessel +datum=potsdam +units=m +no_defs
3500000.00 5651505.56

Example using Gauss Boaga on Italy area (EPSG:3004)

$ echo 15 42 | proj +proj=tmerc +lat_0=0 +lon_0=15 +k=0.9996 +x_0=2520000 +y_0=0
→˓+ellps=intl +units=m +no_defs
2520000.00 4649858.60

Mathematical definition

The formulas describing the Transverse Mercator are all taken from Evenden’s [Evenden2005].

𝜑0 is the latitude of origin that match the center of the map. It can be set with +lat_0.

𝑘0 is the scale factor at the natural origin (on the central meridian). It can be set with +k_0.

𝑀(𝜑) is the meridional distance.

Spherical form

Forward projection

𝐵 = cos𝜑 sin𝜆

𝑥 =
𝑘0
2

ln(
1 +𝐵

1−𝐵
)

𝑦 = 𝑘0(arctan(
tan(𝜑)

cos𝜆
)− 𝜑0)

Inverse projection

𝐷 =
𝑦

𝑘0
+ 𝜑0

𝑥′ =
𝑥

𝑘0

𝜑 = arcsin(
sin𝐷

cosh𝑥′
)

𝜆 = arctan(
sinh𝑥′

cos𝐷
)

74 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Elliptical form

Forward projection

𝑁 =
𝑘0

(1− 𝑒2 sin2 𝜑)1/2

𝑅 =
𝑘0(1− 𝑒2)

(1− 𝑒2 sin2 𝜑)3/2

𝑡 = tan(𝜑)

𝜂 =
𝑒2

1− 𝑒2
𝑐𝑜𝑠2𝜑

𝑥 = 𝑘0𝜆 cos𝜑

+
𝑘0𝜆

3 cos3 𝜑

3!
(1− 𝑡2 + 𝜂2)

+
𝑘0𝜆

5 cos5 𝜑

5!
(5− 18𝑡2 + 𝑡4 + 14𝜂2 − 58𝑡2𝜂2)

+
𝑘0𝜆

7 cos7 𝜑

7!
(61− 479𝑡2 + 179𝑡4 − 𝑡6)

𝑦 =𝑀(𝜑)

+
𝑘0𝜆

2 sin(𝜑) cos𝜑

2!

+
𝑘0𝜆

4 sin(𝜑) cos3 𝜑

4!
(5− 𝑡2 + 9𝜂2 + 4𝜂4)

+
𝑘0𝜆

6 sin(𝜑) cos5 𝜑

6!
(61− 58𝑡2 + 𝑡4 + 270𝜂2 − 330𝑡2𝜂2)

+
𝑘0𝜆

8 sin(𝜑) cos7 𝜑

8!
(1385− 3111𝑡2 + 543𝑡4 − 𝑡6)

Inverse projection

𝜑1 =𝑀−1(𝑦)

𝑁1 =
𝑘0

1− 𝑒2 sin2 𝜑1)1/2

𝑅1 =
𝑘0(1− 𝑒2)

(1− 𝑒2 sin2 𝜑1)3/2

𝑡1 = tan(𝜑1)

𝜂1 =
𝑒2

1− 𝑒2
𝑐𝑜𝑠2𝜑1

2.1. Projections 75

PROJ.4 Documentation, Release 5.0.1

𝜑 = 𝜑1

− 𝑡1𝑥
2

2!𝑅1𝑁1

+
𝑡1𝑥

4

4!𝑅1𝑁3
1

(5 + 3𝑡21 + 𝜂21 − 4𝜂41 − 9𝜂21𝑡
2
1)

− 𝑡1𝑥
6

6!𝑅1𝑁5
1

(61 + 90𝑡21 + 46𝜂21 + 45𝑡41 − 252𝑡21𝜂
2
1)

+
𝑡1𝑥

8

8!𝑅1𝑁7
1

(1385 + 3633𝑡21 + 4095𝑡41 + 1575𝑡61)

𝜆 =
𝑥

cos𝜑𝑁1

− 𝑥3

3! cos𝜑𝑁3
1

(1 + 2𝑡21 + 𝜂21)

+
𝑥5

5! cos𝜑𝑁5
1

(5 + 6𝜂21 + 28𝑡21 − 3𝜂21 + 8𝑡21𝜂
2
1)

− 𝑥7

7! cos𝜑𝑁7
1

(61 + 662𝑡21 + 1320𝑡41 + 720𝑡61)

Further reading

1. Wikipedia

2. EPSG, POSC literature pertaining to Coordinate Conversions and Transformations including Formulas

2.1.111 Two Point Equidistant

76 Chapter 2. Coordinate operations

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://www.ihsenergy.com/epsg/guid7.pdf

PROJ.4 Documentation, Release 5.0.1

2.1.112 Tilted perspective

Classification Azimuthal
Available forms Forward and inverse, spherical projection
Defined area Global
Implemented by Gerald I. Evenden
Options
+h Height (in meters) above the surface. Required.
+azi Bearing (in degrees) from due north.
+tilt Angle (in degrees) away from nadir.
+lat_0 Latitude (in degrees) of the view position.
+lon_0 Longitude (in degrees) of the view position.

Tilted Perspective is similar to Near-sided perspective (nsper) in that it simulates a perspective view from a hight.
Where nsper projects onto a plane tangent to the surface, Tilted Perspective orients the plane towards the direction
of the view. Thus, extra parameters azi and tilt are required beyond nsper`’s h. As with nsper, lat_0 & lon_0
are also required for satellite position.

2.1.113 Universal Polar Stereographic

2.1. Projections 77

PROJ.4 Documentation, Release 5.0.1

2.1.114 Urmaev V

2.1.115 Urmaev Flat-Polar Sinusoidal

2.1.116 Universal Transverse Mercator (UTM)

78 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.117 van der Grinten (I)

2.1.118 van der Grinten II

2.1.119 van der Grinten III

2.1. Projections 79

PROJ.4 Documentation, Release 5.0.1

2.1.120 van der Grinten IV

2.1.121 Vitkovsky I

2.1.122 Wagner I (Kavraisky VI)

80 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.123 Wagner II

𝑥 = 0.92483𝜆 cos 𝜃

𝑦 = 1.38725𝜃

sin 𝜃 = 0.88022 sin(0.8855𝜑)

2.1.124 Wagner III

𝑥 = [cos𝜑𝑡𝑠/ cos(2𝜑𝑡𝑠/3)]𝜆 cos(2𝜑/3)

𝑦 = 𝜑

2.1.125 Wagner IV

2.1.126 Wagner V

2.1. Projections 81

PROJ.4 Documentation, Release 5.0.1

2.1.127 Wagner VI

2.1.128 Wagner VII

2.1.129 Werenskiold I

2.1.130 Winkel I

82 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

2.1.131 Winkel II

2.1.132 Winkel Tripel

2.2 Conversions

Conversions are coordinate operations in which both coordinate reference systems are based on the same datum. In
PROJ projections are differentiated from conversions.

2.2.1 Axis swap

Change the order and sign of 2,3 or 4 axes.

Options
+order Ordered comma-separated list of axis, e.g. +order=2,1,3,4

Each of the possible four axes are numbered with 1-4, such that the first input axis is 1, the second is 2 and so on. The
output ordering is controlled by a list of the input axes re-ordered to the new mapping.

2.2. Conversions 83

PROJ.4 Documentation, Release 5.0.1

Examples

Reversing the order of the axes:

+proj=axisswap +order=4,3,2,1

Swapping the first two axes (x and y):

+proj=axisswap +order=2,1,3,4

The direction, or sign, of an axis can be changed by adding a minus in front of the axis-number:

+proj=axisswap +order=1,-2,3,4

It is only necessary to specify the axes that are affected by the swap operation:

+proj=axisswap +order=2,1

2.2.2 Cartesian to geodetic conversion

Convert geodetic coordinates to cartesian coordinates.

Options
+ellps Ellipsoid of the input coordinates. If used together with the ellipsoid parameters below, +ellps is

overwritten.
+a Semi-major radius of ellipsoid axis.
+b Semi-minor radius of ellipsoid axis.
+es Eccentricity of ellipsoid.
+f Flattening of ellipsoid.

2.2.3 Lat/long (Geodetic)

2.2.4 Lat/long (Geodetic alias)

2.2.5 Unit conversion

Convert between various distance and time units.

Options
+xy_in Input unit of the horizontal components.
+xy_out Output unit of the horizontal components.
+z_in Input unit of the vertical component.
+z_out Output unit of the vertical component.
+t_in Input unit of the time component.
+t_out Output unit of the time component.

There are many examples of coordinate reference systems that are expressed in other units than the meter. There are
also many cases where temporal data has to be translated to different units. The unitconvert operation takes care of
that.

Many North American systems are defined with coordinates in feet. For example in Vermont:

84 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

+proj=pipeline
+step +proj=tmerc +lat_0=42.5 +lon_0=-72.5 +k=0.999964286 +x_0=500000.00001016 +y_0=0
+step +proj=unitconvert +xy_in=m +xy_out=us-ft

Often when working with GNNS data the timestamps are presented in GPS-weeks, but when the data transformed
with the helmert operation timestamps are expected to be in units of decimalyears. This can be fixed with unitconvert:

+proj=pipeline
+step +proj=unitconvert +t_in=gpsweek +t_out=decimalyear
+step +proj=helmert +epoch=2000.0 +t_obs=2017.5 ...

Distance units

In the table below all distance units supported by PROJ is listed. The same list can also be produced on the command
line with proj or cs2cs, by adding the -lu flag when calling the utility.

Label Name
km Kilometer
m Meter
dm Decimeter
cm Centimeter
mm Millimeter
kmi International Nautical Mile
in International Inch
ft International Foot
yd International Yard
mi International Statute Mile
fath International Fathom
ch International Chain
link International Link
us-in U.S. Surveyor’s Inch
us-ft U.S. Surveyor’s Foot
us-yd U.S. Surveyor’s Yard
us-ch U.S. Surveyor’s Chain
us-mi U.S. Surveyor’s Statute Mile
ind-yd Indian Yard
ind-ft Indian Foot
ind-ch Indian Chain

Time units

In the table below all time units supported by PROJ is listed.

mjd Modfied Julian date
decimalyear Decimal year
gps_week GPS Week

2.2. Conversions 85

PROJ.4 Documentation, Release 5.0.1

2.3 Transformations

Transformations coordinate operation in which the two coordinate reference systems are based on different datums.

2.3.1 Kinematic datum shifting utilizing a deformation model

Perform datum shifts means of a deformation/velocity model.

Input type Cartesian coordinates.
Output
type

Cartesian coordinates.

Options
xy_grids Comma-separated list of grids to load.
z_grids Comma-separated list of grids to load.
t_epoch Central epoch of transformation. [decimalyear]. Only used in spatiotemporal transformations.
t_obs Observation time of coordinate(s). Mostly useful in 2D and 3D transformations. [decimalyear].

Optional.

The deformation operation is used to adjust coordinates for intraplate deformations. Usually the transformation param-
eters for regional plate-fixed reference frames such as the ETRS89 does not take intraplate deformation into account.
It is assumed that tectonic plate of the region is rigid. Often times this is true, but near the plate boundary and in
areas with post-glacial uplift the assumption breaks. Tntraplate deformations can be modelled and then applied to the
coordinates so that they represent the physical world better. In PROJ this is done with the deformation operation.

The horizontal grid is stored in CTable2 format and the vertical grid is stored in the GTX format. Both grids are ex-
pected to contain grid-values in units of mm/year. Details about the formats can be found in the GDAL documentation.
GDAL both reads and writes both file formats. Using GDAL for construction of new grids is recommended.

Example

In [Häkli2016] coordinate transformation including a deformation model is described. The paper describes how co-
ordinates from the global ITRFxx frames are transformed to the local Nordic realisations of ERTS89. Scandinavia is
an area with significant post-glacial rebound. The deformations from the post-glacial uplift is not accounted for in the
offcial ETRS89 transformations so in order to get accurate transformations in the Nordic countries it is necesarry to
apply the deformation model. The transformation from ITRF2008 to the Danish realisation of ETRS89 is in PROJ
described as:

proj = pipeline ellps = GRS80
ITRF2008@t_obs -> ITRF2000@t_obs

step init = ITRF2008:ITRF2000
ITRF2000@t_obs -> ETRF2000@t_obs

step proj=helmert t_epoch = 2000.0 transpose
x = 0.054 rx = 0.000891 drx = 8.1e-05
y = 0.051 ry = 0.00539 dry = 0.00049
z = -0.048 rz = -0.008712 drz = -0.000792
ETRF2000@t_obs -> NKG_ETRF00@2000.0

step proj = deformation t_epoch = 2000.0
xy_grids = ./nkgrf03vel_realigned_xy.ct2
z_grids = ./nkgrf03vel_realigned_z.gtx
NKG_ETRF@2000.0 -> ETRF92@2000.0

step proj=helmert transpose s = -0.009420e
x = 0.03863 rx = 0.00617753

(continues on next page)

86 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

y = 0.147 ry = 5.064e-05
z = 0.02776 rz = 4.729e-05
ETRF92@2000.0 -> ETRF92@1994.704

step proj = deformation t_epoch = 1994.704 t_obs = 2000.0
xy_grids = ./nkgrf03vel_realigned_xy.ct2
z_grids = ./nkgrf03vel_realigned_z.gtx

From this we can see that the transformation from ITRF2008 to the Danish realisation of ETRS89 is a combination of
Helmert transformations and adjustments with a deformation model. The first use of the deformation operation is:

proj = deformation t_epoch = 2000.0
xy_grids = ./nkgrf03vel_realigned_xy.ct2
z_grids = ./nkgrf03vel_realigned_z.gtx

Here we set the central epoch of the transformation, 2000.0. The observation epoch is expected as part of the input
coordinate tuple. The deformation model is described by two grids, specified with xy_grids and z_grids. The first is
the horizontal part of the model and the second is the vertical component.

Mathematical description

Mathematically speaking, application of a deformation model is simple. The deformation model is represented as a
grid of velocities in three dimensions. Coordinate corrections are applied in cartesian space. For a given coordinate,
(𝑋,𝑌, 𝑍), velocities (𝑉𝑋 , 𝑉𝑌 , 𝑉𝑍) can be interpolated from the gridded model. The time span between 𝑡𝑐 and 𝑡𝑜𝑏𝑠
determine the magnitude of the coordinate correcton as seen in eq. (2.1) below.⎛⎝𝑋𝑌

𝑍

⎞⎠
𝐵

=

⎛⎝𝑋𝑌
𝑍

⎞⎠
𝐴

+ (𝑡𝑐 − 𝑡𝑜𝑏𝑠)

⎛⎝𝑉𝑋𝑉𝑌
𝑉𝑍

⎞⎠ (2.1)

Corrections are done in cartesian space.

Coordinates of the gridded model are in ENU (east, north, up) space because it would otherwise require an enormous
3 dimensional grid to handle the corrections in cartesian space. Keeping the correction in lat/long space reduces the
complexity of the grid significantly. Consequentyly though, the input coordinates needs to be converted to lat/long
space when searching for corrections in the grid. This is done with cart operation. The converted grid corrections can
then be applied to the input coordinates in cartesian space. The conversion from ENU space to cartesian space is done
in the following way: ⎛⎝𝑋𝑌

𝑍

⎞⎠ =

⎛⎝− sin𝜑 cos𝜆𝑁 − sin𝜆𝐸 + cos𝜑 cos𝜆𝑈
− sin𝜑 sin𝜆𝑁 + sin𝜆𝐸 + cos𝜑 sin𝜆𝑈

cos𝜑𝑁 + sin𝜑𝑈

⎞⎠ (2.1)

where 𝜑 and 𝜆 are the latitude and longitude of the coordinate that is searched for in the grid. (𝐸,𝑁,𝑈) are the grid
values in ENU-space and (𝑋,𝑌, 𝑍) are the corrections converted to cartesian space.

2.3.2 Helmert transform

The Helmert transformation changes coordinates from one reference frame to anoether by means of 3-, 4-and 7-
parameter shifts, or one of their 6-, 8- and 14-parameter kinematic counterparts.

2.3. Transformations 87

PROJ.4 Documentation, Release 5.0.1

Input type Cartesian coordinates (spatial), decimalyears (tem-
poral).

Output type Cartesian coordinates (spatial), decimalyears (tem-
poral).

Options
x Translation of the x-axis [m]. Optional.
y Translation of the y-axis [m]. Optional.
z Translation of the z-axis. [m]. Optional.
s Scale factor [ppm]. Optional.
rx X-axis rotation in the 3D Helmert [arc seconds]. Optional.
ry Y-axis rotatoin in the 3D Helmert [arc seconds]. Optional.
rz Z-axis rotation in the 3D Helmert [arc seconds]. Optional.
theta Rotation angle in the 2D Helmert. [arc seconds]. Optional.
dx Translation rate of the x-axis. [m/year]. Optional.
dy Translation rate of the y-axis. [m/year]. Optional.
dz Translation rate of the z-axis. [m/year]. Optional.
ds Scale rate factor [ppm/year]. Optional.
drx Rotation rate of the x-axis [arc seconds/year]. Optional.
dry Rotation rate of the y-axis [arc seconds/year]. Optional.
drz Rotation rate of the y-axis [arc seconds/year]. Optional.
t_epoch Central epoch of transformation. [decimalyear]. Only used in spatiotemporal transformations. Op-

tional.
t_obs Observation time of coordinate(s). Mostly useful in 2D and 3D transformations. [decimalyear]. Op-

tional.
exact Use exact transformation equations. Optional.
trans-
pose

Transpose rotation matrix. Optional.

The Helmert transform, in all it’s various incarnations, is used to perform reference frame shifts. The transformation
operates in cartesian space. It can be used to transform planar coordinates from one datum to another, transform 3D
cartesian coordinates from one static reference frame to another or it can be used to do fully kinematic transformations
from global reference frames to local static frames.

All of the parameters described in the table above are marked as optional. This is true as long as at least one parameter
is defined in the setup of the transformation. The behaviour of the transformation depends on which parameters are
used in the setup. For instance, if a rate of change paramater is specified a kinematic version of the transformation is
used.

The kinematic transformations require an observation time of the coordinate, as well as a central epoch for the trans-
formation. The latter is usually documented alongside the rest of the transformation parameters for a given transfor-
mation. The central eopch is controlled with the parameter t_epoch. The observation time can either by stated as
part of the coordinate when using PROJ’s 4D-functionality or it can be controlled in the transformation setup by the
parameter t_obs. When t_obs is specified, all transformed coordinates are treated as if they have the same observation
time.

88 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

Examples

Transforming coordinates from NAD72 to NAD83 using the 4 parameter 2D Helmert:

proj=helmert ellps=GRS80 x=-9597.3572 y=.6112
s=0.304794780637 theta=-1.244048

Simplified transformations from ITRF2008/IGS08 to ETRS89 using 7 parameters:

proj=helmert ellps=GRS80 x=0.67678 y=0.65495 z=-0.52827
rx=-0.022742 ry=0.012667 rz=0.022704 s=-0.01070

Transformation from ITRF2000@2017.0 to ITRF93@2017.0 using 15 parameters:

proj=helmert ellps=GRS80
x=0.0127 y=0.0065 z=-0.0209 s=0.00195
dx=-0.0029 dy=-0.0002 dz=-0.0006 ds=0.00001
rx=-0.00039 ry=0.00080 rz=-0.00114
drx=-0.00011 dry=-0.00019 drz=0.00007
epoch=1988.0 tobs=2017.0 transpose

Mathematical description

In the notation used below, 𝑃 is the rate of change of a given transformation parameter 𝑃 . �̇� is the kinematically
adjusted version of 𝑃 , described by

�̇� = 𝑃 + 𝑃 (𝑡− 𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙) (2.1)

where 𝑡 is the observation time of the coordinate and 𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙 is the central epoch of the transformation. Equation (2.1)
can be used to propagate all transformation parameters in time.

Superscripts of vectors denote the reference frame the coordinates in the vector belong to.

2D Helmert

The simplest version of the Helmert transform is the 2D case. In the 2-dimensional case only the horizontal coordinates
are changed. The coordinates can be translated, rotated and scale. Translation is controlled with the x and y parameters.
The rotation is determined by theta and the scale is controlled with the s paramaters.

Note: The scaling parameter s is unitless for the 2D Helmert, as opposed to the 3D version where the scaling
parameter is given in units of ppm.

Mathematically the 2D Helmert is described as:[︂
𝑋
𝑌

]︂𝐵
=

[︂
𝑇𝑥
𝑇𝑦

]︂
+ 𝑠

[︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]︂ [︂
𝑋
𝑌

]︂𝐴
(2.2)

(2.2) can be extended to a time-varying kinematic version by adjusting the parameters with (2.1) to (2.2), which yields
the kinematic 2D Helmert transform:[︂

𝑋
𝑌

]︂𝐵
=

[︂
𝑇𝑥
𝑇𝑦

]︂
+ 𝑠(𝑡)

[︂
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]︂ [︂
𝑋
𝑌

]︂𝐴
(2.2)

All parameters in (2.2) are determined by the use of (2.1), which applies the rate of change to each individual parameter
for a given timespan between 𝑡 and 𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙.

2.3. Transformations 89

PROJ.4 Documentation, Release 5.0.1

3D Helmert

The general form of the 3D Helmert is

𝑉 𝐵 = 𝑇 +
(︀
1 + 𝑠× 10−6

)︀
R𝑉 𝐴 (2.2)

Where 𝑇 is a vector consisting of the three translation parameters, 𝑠 is the scaling factor and R is a rotation matrix.
𝑉 𝐴 and 𝑉 𝐵 are coordinate vectors, with 𝑉 𝐴 being the input coordinate and 𝑉 𝐵 is the output coordinate.

The rotation matrix is composed of three rotation matrices, one for each axis:

R𝑋 =

⎡⎣1 0 0
0 cos𝜑 − sin𝜑
0 sin𝜑 cos𝜑

⎤⎦ (2.2)

R𝑌 =

⎡⎣ cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎤⎦ (2.3)

R𝑍 =

⎡⎣cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤⎦ (2.4)

The three rotation matrices can be combined in one:

R = RXRYRY (2.5)

For R, this yields:⎡⎣cos 𝜃 cos𝜓 − cos𝜑 sin𝜓 + sin𝜑 sin 𝜃 cos𝜓 sin𝜑 sin𝜓 + cos𝜑 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 cos𝜑 cos𝜓 + sin𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓 + cos𝜑 sin 𝜃 sin𝜓
− sin 𝜃 sin𝜑 cos 𝜃 cos𝜑 cos 𝜃

⎤⎦ (2.6)

Using the small angle approxition the rotation matrix can be simplified to

R =

⎡⎣ 1 −𝑅𝑧 𝑅𝑦

𝑅𝑧 1 −𝑅𝑥

−𝑅𝑦 𝑅𝑥 1

⎤⎦ (2.7)

Which allow us to express the most common version of the Helmert transform, using the approximated rotation matrix:⎡⎣𝑋𝑌
𝑍

⎤⎦𝐵

=

⎡⎣𝑇𝑥𝑇𝑦
𝑇𝑧

⎤⎦+
(︀
1 + 𝑠× 10−6

)︀⎡⎣ 1 −𝑅𝑧 𝑅𝑦

𝑅𝑧 1 −𝑅𝑥

−𝑅𝑦 𝑅𝑥 1

⎤⎦⎡⎣𝑋𝑌
𝑍

⎤⎦𝐴

(2.7)

If the rotation matrix is transposed the transformation is effectively reversed. This is cause for some confusion since
there is no correct way of defining the rotation matrix. Two conventions exists and they seem to be equally popular. In
PROJ the rotation matrix can be transposed by adding the transpose flag in the transformation setup.

Applying (2.1) we get the kinematic version of the approximated 3D Helmert:⎡⎣𝑋𝑌
𝑍

⎤⎦𝐵

=

⎡⎣𝑇𝑥𝑇𝑦
𝑇𝑧

⎤⎦+
(︀
1 + �̇�× 10−6

)︀⎡⎣ 1 −�̇�𝑧 �̇�𝑦

�̇�𝑧 1 −𝑅𝑥

−�̇�𝑦 𝑅𝑥 1

⎤⎦⎡⎣𝑋𝑌
𝑍

⎤⎦𝐴

(2.7)

The Helmert transformation can be applied without using the rotation parameters, in which case it becomes a simlpe
translation of the origin of the coordinate system. When using the Helmert in this version equation (2.2) simplies to:⎡⎣𝑋𝑌

𝑍

⎤⎦𝐵

=

⎡⎣𝑇𝑥𝑇𝑦
𝑇𝑧

⎤⎦+

⎡⎣𝑋𝑌
𝑍

⎤⎦𝐴

(2.7)

90 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

That after application of (2.1) has the following kinematic countpart:⎡⎣𝑋𝑌
𝑍

⎤⎦𝐵

=

⎡⎣𝑇𝑥𝑇𝑦
𝑇𝑧

⎤⎦+

⎡⎣𝑋𝑌
𝑍

⎤⎦𝐴

(2.7)

2.3.3 Molodensky transform

The Molodensky transformation resembles a Helmert transform with zero rotations and a scale of unity, but con-
verts directly from geodetic coordinates to geodetic coordinates, without the intermediate shifts to and from cartesian
geocentric coordinates, associated with the Helmert transformation. The Molodensky transformation is simple to im-
plement and to parameterize, requiring only the 3 shifts between the input and output frame, and the corresponding
differences between the semimajor axes and flattening parameters of the reference ellipsoids. Due to its algorith-
mic simplicity, it was popular prior to the ubiquity of digital computers. Today, it is mostly interesting for historical
reasons, but nevertheless indispensable due to the large amount of data that has already been transformed that way
[EversKnudsen2017].

Input
type

Geodetic coordinates.

Output
type

Geodetic coordinates.

Options
+da Difference in semimajor axis of the defining ellipsoids.
+df Difference in flattening of the defining ellipsoids.
+dx Offset of the X-axes of the defining ellipsoids.
+dy Offset of the Y-axes of the defining ellipsoids.
+dz Offset of the Z-axes of the defining ellipsoids.
+ellps Ellipsoid definition of source coordinates. Any specification can be used (e.g. +a, +rf, etc). If not

specified, default ellipsoid is used.
+abridged Use the abridged version of the Molodensky transform. Optional.

The Molodensky transform can be used to perform a datum shift from coordinate (𝜑1, 𝜆1, ℎ1) to (𝜑2, 𝜆2, ℎ2) where
the two coordinates are referenced to different ellipsoids. This is based on three assumptions:

1. The cartesian axes, 𝑋,𝑌, 𝑍, of the two ellipsoids are parallel.

2. The offset, 𝛿𝑋, 𝛿𝑌, 𝛿𝑍, between the two ellipsoid are known.

3. The characteristics of the two ellipsoids, expressed as the difference in semimajor axis (𝛿𝑎) and flattening (𝛿𝑓),
are known.

The Molodensky transform is mostly used for transforming between old systems dating back to the time before com-
puters. The advantage of the Molodensky transform is that it is fairly simple to compute by hand. The ease of
computation come at the cost of limited accuracy.

A derivation of the mathematical formulas for the Molodensky transform can be found in [Deakin2004].

2.3. Transformations 91

PROJ.4 Documentation, Release 5.0.1

Examples

The abridged Molodensky:

proj=molodensky a=6378160 rf=298.25 da=-23 df=-8.120449e-8 dx=-134 dy=-48 dz=149
→˓abridged

The same transformation using the standard Molodensky:

proj=molodensky a=6378160 rf=298.25 da=-23 df=-8.120449e-8 dx=-134 dy=-48 dz=149

2.3.4 Horizontal grid shift

Change of horizontal datum by grid shift.

Input type Geodetic coordinates.
Output type Geodetic coordinates.
Options
+grids Comma-separated list of grids to load.

The horizontal grid shift is done by offsetting the planar input coordinates by a specific amount determined by the
loaded grids. The simplest use case of the horizontal grid shift is applying a single grid:

+hgridshift +grids=nzgr2kgrid0005.gsb

More than one grid can be loaded at the same time, for instance in case the dataset needs to be transformed spans
several countries. In this example grids of the continental US, Alaska and Canada is loaded at the same time:

+hgridshift +grids=@conus,@alaska,@ntv2_0.gsb,@ntv_can.dat

The @ in the above example states that the grid is optional, in case the grid is not found in the PROJ search path. The
list of grids is prioritized so that grids in the start of the list takes presedence over the grids in the back of the list.

PROJ supports CTable2, NTv1 and NTv2 files for horizontal grid corrections. Details about all three formats can be
found in the GDAL documentation. GDAL reads and writes all three formats. Using GDAL for construction of new
grids is recommended.

2.3.5 Vertical grid shift

Change Vertical datum change by grid shift

Input type Geodetic coordinates (horizontal), meters (vertical).
Output type Geodetic coordinates (horizontal), meters (vertical).
Options
+grids Comma-separated list of grids to load.

The vertical grid shift is done by offsetting the vertical input coordinates by a specific amount determined by the
loaded grids. The simplest use case of the horizontal grid shift is applying a single grid. Here we change the vertical
reference from the ellipsoid to the global geoid model, EGM96:

+vgridshift +grids=egm96_16.gtx

92 Chapter 2. Coordinate operations

PROJ.4 Documentation, Release 5.0.1

More than one grid can be loaded at the same time, for instance in the case where a better geoid model than the global
is available for a certain area. Here the gridshift is set up so that the local DVR90 geoid model takes presedence over
the global model:

+vgridshift +grids=@dvr90.gtx,egm96_16.gtx

The @ in the above example states that the grid is optional, in case the grid is not found in the PROJ search path. The
list of grids is prioritized so that grids in the start of the list takes presedence over the grids in the back of the list.

PROJ supports the GTX file format for vertical grid corrections. Details about all the format can be found in the GDAL
documentation. GDAL both reads and writes the format. Using GDAL for construction of new grids is recommended.

2.4 The pipeline operator

Construct complex operations by daisy-chaining operations in a sequential pipeline.

Input type Any.
Output type Any.
Options
step Separate each step in a pipeline.
inv Invert a step in a pipeline.

Note: See the section on Geodetic transformation for a more thorough introduction to the concept of transformation
pipelines in PROJ.

With the pipeline operation it is possible to perform several operations after each other on the same input data. This
feature makes it possible to create transformations that are made up of more than one operation, e.g. performing a
datum shift and then applying a suitable map projection. Theoretically any transformation between two coordinate
reference systems is possible to perform using the pipeline operation, provided that the necessary coordinate operations
in each step is available in PROJ.

A pipeline is made up of a number of steps, with each step being a coordinate operation in itself. By connecting
these individual steps sequentially we end up with a concatenated coordinate operation. An example of this is a
transformation from geodetic coordinates on the GRS80 ellipsoid to a projected system where the east-west and north-
east axes has been swapped:

+proj=pipeline +ellps=GRS80 +step +proj=merc +step +proj=axisswap +order=2,1

Here the first step is applying the Mercator projection and the second step is applying the Axis swap conversion. Note
that the +ellps=GRS80 is specified before the first occurence of +step. This means that the GRS80 ellipsoid is used
in both steps, since any parameter stated before the first occurence of +step is treated as a global parameter and is
transferred to each individual steps.

2.4. The pipeline operator 93

PROJ.4 Documentation, Release 5.0.1

2.4.1 Rules for pipelines

1. Pipelines must consist of at least one step.

+proj=pipeline

Will result in an error.

2. Pipelines can only be nested if the nested pipeline is defined in an init-file.

+proj=pipeline
+step +proj=pipeline +step +proj=merc +step +proj=axisswap +order=2,1
+step +proj=unitconvert +xy_in=m +xy_out=us-ft

Results in an error, while

+proj=pipeline
+step +init=predefined_pipelines:projectandswap
+step +proj=unitconvert +xy_in=m +xy_out=us-ft

does not.

3. Pipelines without a forward path can’t be constructed.

+proj=pipeline +step +inv +proj=urm5

Will result in an error since Urmaev V does not have an inverse operation defined.

4. Parameters added before the first `+step` are global and will be applied to all steps.

In the following the GRS80 ellipsoid will be applied to all steps.

+proj=pipeline +ellps=GRS80
+step +proj=cart
+step +proj=helmert +x=10 +y=3 +z=1
+step +proj=cart +inv
+step +proj=merc

94 Chapter 2. Coordinate operations

CHAPTER

THREE

RESOURCE FILES

Contents

• Resource files

– External resources

– Transformation grids

– Init files

– The defaults file

A number of files containing preconfigured transformations and default parameters for certain projections are bundled
with the PROJ distribution. Init files contains preconfigured proj-strings for various coordinate reference systems and
the defaults file contains default values for parameters of select projections.

In addition to the bundled init-files the PROJ.4 project also distribute a number of packages containing transformation
grids and additional init-files not included in the main PROJ package.

3.1 External resources

For a functioning PROJ installation of the proj-datumgrid is needed. If you have installed PROJ from a package system
chances are that this will already be done for you. The proj-datumgrid package provides transformation grids that are
essential for many of the predefined transformations in PROJ. Which grids are included in the package can be seen on
the proj-datumgrid repository as well as descriptions of those grids.

In addition to the default proj-datumgrid package regional packages are also distributed. These include grids and
init-files that are valid within the given region. The packages are divided into geographical regions in order to keep
the needed disk space by PROJ at a minimum. Some users may have a use for resource files covering several regions
in which case they can download more than one.

At the moment three regional resource file packages are distributed:

• Europe

• Oceania

• North America

Click the links to jump to the relevant README files for each package. Details on the content of the packages
maintained there.

Links to the resource packages can be found in the download section.

95

https://github.com/OSGeo/proj-datumgrid
https://github.com/OSGeo/proj-datumgrid
https://github.com/OSGeo/proj-datumgrid/tree/master/europe#proj-datumgrid-europe
https://github.com/OSGeo/proj-datumgrid/tree/master/oceania#proj-datumgrid-oceania
https://github.com/OSGeo/proj-datumgrid/tree/master/north-america#proj-datumgrid-north-america

PROJ.4 Documentation, Release 5.0.1

3.2 Transformation grids

Grid files are important for shifting and transforming between datums.

PROJ supports CTable2, NTv1 and NTv2 files for horizontal grid corrections and the GTX file format for vertical
corrections. Details about the formats can be found in the GDAL documentation. GDAL reads and writes all formats.
Using GDAL for construction of new grids is recommended.

Below is a given a list of grid resources for various countries which are not included in the grid distributions mentioned
above.

3.2.1 Free grids

Below is a list of grids distributed under a free and open license.

Switzerland

Background in ticket #145

We basically have two shift grids available. An official here:

Swiss CHENyx06 dataset in NTv2 format

And a derived in a temporary location which is probably going to disappear soon.

Main problem seems to be there’s no mention of distributivity of the grid from the official website. It just tells: “you
can use freely”. The “contact” link is also broken, but maybe someone could make a phone call to ask for rephrasing
that.

Hungary

Hungarian grid ETRS89 - HD72/EOV (epsg:23700), both horizontal and elevation grids

3.2.2 Non-Free Grids

Not all grid shift files have licensing that allows them to be freely distributed, but can be obtained by users through
free and legal methods.

Canada NTv2.0

Although NTv1 grid shifts are provided freely with PROJ, the higher-quality NTv2.0 file needs to be downloaded from
Natural Resources Canada. More info: http://www.geod.nrcan.gc.ca/tools-outils/ntv2_e.php.

Procedure:

1. Visit the NTv2, and register/login

2. Follow the Download NTv2 link near the bottom of the page.

3. Unzip ntv2_100325.zip (or similar), and move the grid shift file NTV2_0.GSB to the proj directory (be sure to
change the name to lowercase for consistency) * e.g.: mv NTV2_0.GSB /usr/local/share/proj/ntv2_0.gsb

4. Test it using:

96 Chapter 3. Resource files

http://gdal.org/
https://github.com/OSGeo/proj.4/issues/145
https://shop.swisstopo.admin.ch/en/products/geo_software/GIS_info
https://github.com/OSGeoLabBp/eov2etrs/
http://www.geod.nrcan.gc.ca/tools-outils/ntv2_e.php
http://webapp.geod.nrcan.gc.ca/geod/tools-outils/applications.php?locale=en#ntv2

PROJ.4 Documentation, Release 5.0.1

cs2cs +proj=latlong +ellps=clrk66 +nadgrids=@ntv2_0.gsb +to +proj=latlong
→˓+ellps=GRS80 +datum=NAD83
-111 50

111d0'3.006"W 50d0'0.103"N 0.000 # correct answer

Australia

Geocentric Datum of Australia AGD66/AGD84

Canada

Canadian NTv2 grid shift binary for NAD27 <=> NAD83.

Germany

German BeTA2007 DHDN GK3 => ETRS89/UTM

Great Britain

Great Britain’s OSTN15_NTv2: OSGB 1936 => ETRS89

Great Britain’s OSTN02_NTv2: OSGB 1936 => ETRS89

Austria

Austrian Grid for MGI

Spain

Spanish grids for ED50.

Portugal

Portuguese grids for ED50, Lisbon 1890, Lisbon 1937 and Datum 73

Brazil

Brazilian grids for datums Corrego Alegre 1961, Corrego Alegre 1970-72, SAD69 and SAD69(96)

3.2. Transformation grids 97

http://www.icsm.gov.au/gda/tech.html
http://open.canada.ca/data/en/dataset/b3534942-31ea-59cf-bcc3-f8dc4875081a
http://crs.bkg.bund.de/crseu/crs/descrtrans/BeTA/de_dhdn2etrs_beta.php
https://www.ordnancesurvey.co.uk/docs/gps/OSTN15_NTv2.zip
http://www.ordnancesurvey.co.uk/business-and-government/help-and-support/navigation-technology/os-net/ostn02-ntv2-format.html
http://www.bev.gv.at/portal/page?_pageid=713,2204753&_dad=portal&_schema=PORTAL
http://www.ign.es/ign/layoutIn/herramientas.do#DATUM
http://www.fc.up.pt/pessoas/jagoncal/coordenadas/index.htm
http://www.ibge.gov.br/home/geociencias/geodesia/param_transf/default_param_transf.shtm

PROJ.4 Documentation, Release 5.0.1

South Africa

South African grid (Cape to Hartebeesthoek94 or WGS84)

Netherlands

Dutch grid (Registration required before download)

3.2.3 HARN

With the support of i-cubed, Frank Warmerdam has written tools to translate the HPGN grids from NOAA/NGS from
.los/.las format into NTv2 format for convenient use with PROJ. This project included implementing a .los/.las
reader for GDAL, and an NTv2 reader/writer. Also, a script to do the bulk translation was implemented in https://
github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/loslas2ntv2.py. The command to do the translation was:

loslas2ntv2.py -auto *hpgn.los

As GDAL uses NAD83/WGS84 as a pivot datum, the sense of the HPGN datum shift offsets were negated to map
from HPGN to NAD83 instead of the other way. The files can be used with PROJ like this:

cs2cs +proj=latlong +datum=NAD83
+to +proj=latlong +nadgrids=./azhpgn.gsb +ellps=GRS80

input:
-112 34

output:
111d59'59.996"W 34d0'0.006"N -0.000

This was confirmed against the NGS HPGN calculator.

The grids are available at http://download.osgeo.org/proj/hpgn_ntv2.zip

3.2.4 HTDP

This page documents use of the crs2crs2grid.py script and the HTDP (Horizontal Time Dependent Positioning) grid
shift modelling program from NGS/NOAA to produce PROJ compatible grid shift files for fine grade conversions
between various NAD83 epochs and WGS84. Traditionally PROJ has treated NAD83 and WGS84 as equivalent and
failed to distinguish between different epochs or realizations of those datums. At the scales of much mapping this is
adequate but as interest grows in high resolution imagery and other high resolution mapping this is inadequate. Also,
as the North American crust drifts over time the displacement between NAD83 and WGS84 grows (more than one
foot over the last two decades).

98 Chapter 3. Resource files

http://eepublishers.co.za/article/datum-transformations-using-the-ntv2-grid.html
https://www.kadaster.nl/web/Themas/Registraties/Rijksdriehoeksmeting/Transformatie-van-coordinaten.htm
http://www.i3.com
https://github.com/OSGeo/gdal/tree/trunk/gdal/frmts/raw/loslasdataset.cpp
https://github.com/OSGeo/gdal/tree/trunk/gdal/frmts/raw/loslasdataset.cpp
https://github.com/OSGeo/gdal/tree/trunk/gdal/frmts/raw/ntv2dataset.cpp
https://github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/loslas2ntv2.py
https://github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/loslas2ntv2.py
http://www.ngs.noaa.gov/cgi-bin/nadcon2.prl
http://download.osgeo.org/proj/hpgn_ntv2.zip

PROJ.4 Documentation, Release 5.0.1

Getting and building HTDP

The HTDP modelling program is in written FORTRAN. The source and documentation can be found on the HTDP
page at http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml

On linux systems it will be necessary to install gfortran or some FORTRAN compiler. For ubuntu something like the
following should work.

apt-get install gfortran

To compile the program do something like the following to produce the binary “htdp” from the source code.

gfortran htdp.for -o htdp

Getting crs2crs2grid.py

The crs2crs2grid.py script can be found at https://github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/
crs2crs2grid.py

It depends on having the GDAL Python bindings operational. If they are not

Traceback (most recent call last):
File "./crs2crs2grid.py", line 37, in <module>
from osgeo import gdal, gdal_array, osr

ImportError: No module named osgeo

Usage

crs2crs2grid.py
<src_crs_id> <src_crs_date> <dst_crs_id> <dst_crs_year>
[-griddef <ul_lon> <ul_lat> <ll_lon> <ll_lat> <lon_count> <lat_count>]
[-htdp <path_to_exe>] [-wrkdir <dirpath>] [-kwf]
-o <output_grid_name>

-griddef: by default the following values for roughly the continental USA
at a six minute step size are used:
-127 50 -66 25 251 611

-kwf: keep working files in the working directory for review.

crs2crs2grid.py 29 2002.0 8 2002.0 -o nad83_2002.ct2

The goal of crs2crs2grid.py is to produce a grid shift file for a designated region. The region is defined using the
-griddef switch. When missing a continental US region is used. The script creates a set of sample points for the grid
definition, runs the “htdp” program against it and then parses the resulting points and computes a point by point shift
to encode into the final grid shift file. By default it is assumed the htdp program will be in the executable path. If not,
please provide the path to the executable using the -htdp switch.

The htdp program supports transformations between many CRSes and for each (or most?) of them you need to provide
a date at which the CRS is fixed. The full set of CRS Ids available in the HTDP program are:

1...NAD_83(2011) (North America tectonic plate fixed)
29...NAD_83(CORS96) (NAD_83(2011) will be used)
30...NAD_83(2007) (NAD_83(2011) will be used)
2...NAD_83(PA11) (Pacific tectonic plate fixed)

(continues on next page)

3.2. Transformation grids 99

http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml
https://github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/crs2crs2grid.py
https://github.com/OSGeo/gdal/tree/trunk/gdal/swig/python/samples/crs2crs2grid.py

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

31...NAD_83(PACP00) (NAD 83(PA11) will be used)
3...NAD_83(MA11) (Mariana tectonic plate fixed)
32...NAD_83(MARP00) (NAD_83(MA11) will be used)

4...WGS_72 16...ITRF92
5...WGS_84(transit) = NAD_83(2011) 17...ITRF93
6...WGS_84(G730) = ITRF92 18...ITRF94 = ITRF96
7...WGS_84(G873) = ITRF96 19...ITRF96
8...WGS_84(G1150) = ITRF2000 20...ITRF97
9...PNEOS_90 = ITRF90 21...IGS97 = ITRF97

10...NEOS_90 = ITRF90 22...ITRF2000
11...SIO/MIT_92 = ITRF91 23...IGS00 = ITRF2000
12...ITRF88 24...IGb00 = ITRF2000
13...ITRF89 25...ITRF2005
14...ITRF90 26...IGS05 = ITRF2005
15...ITRF91 27...ITRF2008

28...IGS08 = ITRF2008

The typical use case is mapping from NAD83 on a particular date to WGS84 on some date. In this case the source
CRS Id “29” (NAD_83(CORS96)) and the destination CRS Id is “8 (WGS_84(G1150)). It is also necessary to select
the source and destination date (epoch). For example:

crs2crs2grid.py 29 2002.0 8 2002.0 -o nad83_2002.ct2

The output is a CTable2 format grid shift file suitable for use with PROJ (4.8.0 or newer). It might be utilized something
like:

cs2cs +proj=latlong +ellps=GRS80 +nadgrids=./nad83_2002.ct2 +to +proj=latlong
→˓+datum=WGS84

See Also

• http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml - NGS/NOAA page about the HTDP model and program.
Source for the HTDP program can be downloaded from here.

3.3 Init files

Init files are used for preconfiguring proj-strings for often used transformations, such as those found in the EPSG
database. Most init files contain transformations from a given coordinate reference system to WGS84. This makes
it easy to transformations between any two coordinate reference systems with cs2cs. Init files can however contain
any proj-string and don’t necesarily have to follow the cs2cs paradigm where WGS84 is used as a pivot datum. The
ITRF init file is a good example of that.

A number of init files come pre-bundled with PROJ but it is also possible to add your own custom init files. PROJ
looks for the init files in the directoty listed in the PROJ_LIB environment variable.

The format of init files made up of a identifier in angled brackets and a proj-string:

<3819> +proj=longlat +ellps=bessel
+towgs84=595.48,121.69,515.35,4.115,-2.9383,0.853,-3.408 +no_defs <>

The above example is the first entry from the epsg init file. So, this is the coordinate reference system with ID 3819
in the EPSG database. Comments can be inserted by prefixing them with a “#”. With version 4.10.0 a new special

100 Chapter 3. Resource files

http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml

PROJ.4 Documentation, Release 5.0.1

metadata entry is now accepted in init files. It can be parsed with a function from the public API. The metadata entry
in the epsg init file looks like this at the time of writing:

<metadata> +version=9.0.0 +origin=EPSG +lastupdate=2017-01-10

Pre-configured proj-strings from init files are used in the following way:

$ cs2cs -v +proj=latlong +to +init=epsg:3819
---- From Coordinate System ----
#Lat/long (Geodetic alias)
#
+proj=latlong +ellps=WGS84
---- To Coordinate System ----
#Lat/long (Geodetic alias)
#
+init=epsg:3819 +proj=longlat +ellps=bessel
+towgs84=595.48,121.69,515.35,4.115,-2.9383,0.853,-3.408 +no_defs

It is possible to override parameters when using +init. Just add the parameter to the proj-string alongside the +init
parameter. For instance by overriding the ellipsoid as in the following example

+init=epsg:25832 +ellps=intl

where the Hayford ellipsoid is used instead of the predefined GRS80 ellipsoid. It is also possible to add additional
parameters not specified in the init file, for instance by adding an obervation epoch when transforming from ITRF2000
to ITRF2005:

+init=ITRF2000:ITRF2005 +tobs=2010.5

which then expands to

+proj=helmert +x=-0.0001 +y=0.0008 +z=0.0058 +s=-0.0004
+dx=0.0002 +dy=-0.0001 +dz=0.0018 +ds=-0.000008
+epoch=2000.0 +transpose
+tobs=2010.5

Below is a list of the init files that are packaged with PROJ.

Name Description
esri Auto-generated mapping from Esri projection index. Not maintained any more
epsg EPSG database
GL27 Great Lakes Grids
IGNF French coordinate systems supplied by the IGNF
ITRF2000 Full set of transformation parameters between ITRF2000 and other ITRF’s
ITRF2008 Full set of transformation parameters between ITRF2008 and other ITRF’s
ITRF2014 Full set of transformation parameters between ITRF2014 and other ITRF’s
nad27 State plane coordinate systems, North American Datum 1927
nad83 State plane coordinate systems, North American Datum 1983

3.3. Init files 101

PROJ.4 Documentation, Release 5.0.1

3.4 The defaults file

The proj_def.dat file supplies default parameters for PROJ. It uses the same syntax as the init files described
above. The identifiers in the defaults file describe to what the parameters should apply. If the <general> identifier
is used, then all parameters in that section applies for all proj-strings. Otherwise the identifier is connected to a
specific projection. With the defaults file supplied with PROJ the default ellipsoid is set to WGS84 (for all proj-
strings). Apart from that only the Albers Equal Area, Lambert Conic Conformal and the Lagrange projections have
default parameters. Defaults can be ignored by adding the +no_def parameter to a proj-string.

102 Chapter 3. Resource files

CHAPTER

FOUR

GEODESIC CALCULATIONS

Contents

• Geodesic calculations

– Introduction

– Solution of geodesic problems

– Additional properties

– Multiple shortest geodesics

– Background

4.1 Introduction

Consider a ellipsoid of revolution with equatorial radius 𝑎, polar semi-axis 𝑏, and flattening 𝑓 = (𝑎− 𝑏)/𝑎. Points on
the surface of the ellipsoid are characterized by their latitude 𝜑 and longitude 𝜆. (Note that latitude here means the
geographical latitude, the angle between the normal to the ellipsoid and the equatorial plane).

The shortest path between two points on the ellipsoid at (𝜑1, 𝜆1) and (𝜑2, 𝜆2) is called the geodesic. Its length is 𝑠12
and the geodesic from point 1 to point 2 has forward azimuths 𝛼1 and 𝛼2 at the two end points. In this figure, we have
𝜆12 = 𝜆2 − 𝜆1.

A geodesic can be extended indefinitely by requiring that any sufficiently small segment is a shortest path; geodesics
are also the straightest curves on the surface.

4.2 Solution of geodesic problems

Traditionally two geodesic problems are considered:

• the direct problem — given 𝜑1, 𝜆1, 𝛼1, 𝑠12, determine 𝜑2, 𝜆2, 𝛼2.

• the inverse problem — given 𝜑1, 𝜆1, 𝜑2, 𝜆2, determine 𝑠12, 𝛼1, 𝛼2.

PROJ incorporates C library for Geodesics from GeographicLib. This library provides routines to solve the direct and
inverse geodesic problems. Full double precision accuracy is maintained provided that |𝑓 | < 1

50 . Refer to the

application programming interface

103

https://geographiclib.sourceforge.io/1.49/C/
https://geographiclib.sourceforge.io
https://geographiclib.sourceforge.io/1.49/C/geodesic_8h.html

PROJ.4 Documentation, Release 5.0.1

for full documentation. A brief summary of the routines is given in geodesic(3).

The interface to the geodesic routines differ in two respects from the rest of PROJ:

• angles (latitudes, longitudes, and azimuths) are in degrees (instead of in radians);

• the shape of ellipsoid is specified by the flattening 𝑓 ; this can be negative to denote a prolate ellipsoid; setting
𝑓 = 0 corresponds to a sphere, in which case the geodesic becomes a great circle.

PROJ also includes a command line tool, geod(1), for performing simple geodesic calculations.

4.3 Additional properties

The routines also calculate several other quantities of interest

• 𝑆12 is the area between the geodesic from point 1 to point 2 and the equator; i.e., it is the area, measured counter-
clockwise, of the quadrilateral with corners (𝜑1, 𝜆1), (0, 𝜆1), (0, 𝜆2), and (𝜑2, 𝜆2). It is given in meters2.

• 𝑚12, the reduced length of the geodesic is defined such that if the initial azimuth is perturbed by 𝑑𝛼1 (radians)
then the second point is displaced by 𝑚12 𝑑𝛼1 in the direction perpendicular to the geodesic. 𝑚12 is given in
meters. On a curved surface the reduced length obeys a symmetry relation, 𝑚12 +𝑚21 = 0. On a flat surface,
we have 𝑚12 = 𝑠12.

• 𝑀12 and 𝑀21 are geodesic scales. If two geodesics are parallel at point 1 and separated by a small distance
:math`dt`, then they are separated by a distance 𝑀12 𝑑𝑡 at point 2. 𝑀21 is defined similarly (with the geodesics
being parallel to one another at point 2). 𝑀12 and 𝑀21 are dimensionless quantities. On a flat surface, we have
𝑀12 =𝑀21 = 1.

• 𝜎12 is the arc length on the auxiliary sphere. This is a construct for converting the problem to one in spherical
trigonometry. The spherical arc length from one equator crossing to the next is always 180∘.

If points 1, 2, and 3 lie on a single geodesic, then the following addition rules hold:

• 𝑠13 = 𝑠12 + 𝑠23,

• 𝜎13 = 𝜎12 + 𝜎23,

• 𝑆13 = 𝑆12 + 𝑆23,

• 𝑚13 = 𝑚12𝑀23 +𝑚23𝑀21,

• 𝑀13 =𝑀12𝑀23 − (1−𝑀12𝑀21)𝑚23/𝑚12,

• 𝑀31 =𝑀32𝑀21 − (1−𝑀23𝑀32)𝑚12/𝑚23.

4.4 Multiple shortest geodesics

The shortest distance found by solving the inverse problem is (obviously) uniquely defined. However, in a few special
cases there are multiple azimuths which yield the same shortest distance. Here is a catalog of those cases:

• 𝜑1 = −𝜑2 (with neither point at a pole). If 𝛼1 = 𝛼2, the geodesic is unique. Otherwise there are two geodesics
and the second one is obtained by setting [𝛼1, 𝛼2]← [𝛼2, 𝛼1], [𝑀12,𝑀21]← [𝑀21,𝑀12], 𝑆12 ← −𝑆12. (This
occurs when the longitude difference is near ±180∘ for oblate ellipsoids.)

• 𝜆2 = 𝜆1 ± 180∘ (with neither point at a pole). If 𝛼1 = 0∘ or ±180∘, the geodesic is unique. Otherwise there
are two geodesics and the second one is obtained by setting [𝛼1, 𝛼2]← [−𝛼1,−𝛼2], 𝑆12 ← −𝑆12. (This occurs
when 𝜑2 is near −𝜑1 for prolate ellipsoids.)

104 Chapter 4. Geodesic calculations

PROJ.4 Documentation, Release 5.0.1

• Points 1 and 2 at opposite poles. There are infinitely many geodesics which can be generated by setting
[𝛼1, 𝛼2] ← [𝛼1, 𝛼2] + [𝛿,−𝛿], for arbitrary 𝛿. (For spheres, this prescription applies when points 1 and 2
are antipodal.)

• 𝑠12 = 0 (coincident points). There are infinitely many geodesics which can be generated by setting [𝛼1, 𝛼2]←
[𝛼1, 𝛼2] + [𝛿, 𝛿], for arbitrary 𝛿.

4.5 Background

The algorithms implemented by this package are given in [Karney2013] and are based on [Bessel1825] and
[Helmert1880]; the algorithm for areas is based on [Danielsen1989]. These improve on the work of [Vincenty1975]
in the following respects:

• The results are accurate to round-off for terrestrial ellipsoids (the error in the distance is less then 15 nanometers,
compared to 0.1 mm for Vincenty).

• The solution of the inverse problem is always found. (Vincenty’s method fails to converge for nearly antipodal
points.)

• The routines calculate differential and integral properties of a geodesic. This allows, for example, the area of a
geodesic polygon to be computed.

Additional background material is provided in [GeodesicBib], [GeodesicWiki], and [Karney2011].

4.5. Background 105

PROJ.4 Documentation, Release 5.0.1

106 Chapter 4. Geodesic calculations

CHAPTER

FIVE

DEVELOPMENT

These pages are primarily focused towards developers either contributing to the PROJ project or using the library in
their own software.

5.1 Quick start

This is a short introduction to the PROJ API. In the following section we create a simple program that transforms a
geodetic coordinate to UTM and back again. The program is explained a few lines at a time. The complete program
can be seen at the end of the section.

See the following sections for more in-depth descriptions of different parts of the PROJ API or consult the API
reference for specifics.

Before the PROJ API can be used it is necessary to include the proj.h header file. Here stdio.h is also included
so we can print some text to the screen:

#include <stdio.h>
#include <proj.h>

Let’s declare a few variables that’ll be used later in the program. Each variable will be discussed below. See the
reference for more info on data types.

PJ_CONTEXT *C;
PJ *P;
PJ_COORD a, b;

For use in multi-threaded programs the PJ_CONTEXT threading-context is used. In this particular example it is not
needed, but for the sake of completeness it created here. The section on threads discusses this in detail.

C = proj_context_create();

Next we create the PJ transformation object P with the function proj_create. proj_create takes the threading
context C created above, and a proj-string that defines the desired transformation. Here we transform from geodetic
coordinate to UTM zone 32N. It is recommended to create one threading-context per thread used by the program. This
ensures that all PJ objects created in the same context will be sharing resources such as error-numbers and loaded
grids. In case the creation of the PJ object fails an error message is displayed and the program returns. See Error
handling for further details.

P = proj_create (C, "+proj=utm +zone=32 +ellps=GRS80");
if (0==P)

return puts ("Oops"), 0;

107

PROJ.4 Documentation, Release 5.0.1

PROJ uses it’s own data structures for handling coordinates. Here we use a PJ_COORD which is easily assigned with
the function proj_coord. Note that the input values are converted to radians with proj_torad. This is necessary
since PROJ is using radians internally. See Transformations for further details.

a = proj_coord (proj_torad(12), proj_torad(55), 0, 0);

The coordinate defined above is transformed with proj_trans_coord. For this a PJ object, a transformation
direction (either forward or inverse) and the coordinate is needed. The transformed coordinate is returned in b. Here
the forward (PJ_FWD) transformation from geodetic to UTM is made.

b = proj_trans_coord (P, PJ_FWD, a);
printf ("easting: %g, northing: %g\n", b.en.e, b.en.n);

The inverse transformation (UTM to geodetic) is done similar to above, this time using PJ_INV as the direction.

b = proj_trans_coord (P, PJ_INV, b);
printf ("longitude: %g, latitude: %g\n", b.lp.lam, b.lp.phi);

Before ending the program the allocated memory needs to be released again:

proj_destroy (P);
proj_context_destroy (C); /* may be omitted in the single threaded case */

A complete compilable version of the above can be seen here:

1 #include <stdio.h>
2 #include <proj.h>
3

4 int main (void) {
5 PJ_CONTEXT *C;
6 PJ *P;
7 PJ_COORD a, b;
8

9 /* or you may set C=0 if you are sure you will use PJ objects from only one
→˓thread */

10 C = proj_context_create();
11

12 P = proj_create (C, "+proj=utm +zone=32 +ellps=GRS80");
13 if (0==P)
14 return puts ("Oops"), 0;
15

16 /* a coordinate union representing Copenhagen: 55d N, 12d E */
17 /* note: PROJ.4 works in radians, hence the proj_torad() calls */
18 a = proj_coord (proj_torad(12), proj_torad(55), 0, 0);
19

20 /* transform to UTM zone 32, then back to geographical */
21 b = proj_trans_coord (P, PJ_FWD, a);
22 printf ("easting: %g, northing: %g\n", b.en.e, b.en.n);
23 b = proj_trans_coord (P, PJ_INV, b);
24 printf ("longitude: %g, latitude: %g\n", b.lp.lam, b.lp.phi);
25

26 /* Clean up */
27 proj_destroy (P);
28 proj_context_destroy (C); /* may be omitted in the single threaded case */
29 return 0;
30 }

108 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

5.2 Transformations

5.3 Error handling

5.4 Threads

This page is about efforts to make PROJ thread safe.

5.4.1 Key Thread Safety Issues

• the global pj_errno variable is shared between threads and makes it essentially impossible to handle errors safely.
Being addressed with the introduction of the projCtx execution context.

• the datum shift using grid files uses globally shared lists of loaded grid information. Access to this has been
made safe in 4.7.0 with the introduction of a PROJ mutex used to protect access to these memory structures (see
pj_mutex.c).

5.4.2 projCtx

Primarily in order to avoid having pj_errno as a global variable, a “thread context” structure has been introduced into a
variation of the PROJ API for the 4.8.0 release. The pj_init() and pj_init_plus() functions now have context variations
called pj_init_ctx() and pj_init_plus_ctx() which take a projections context.

The projections context can be created with pj_ctx_alloc(), and there is a global default context used when one is not
provided by the application. There is a pj_ctx_ set of functions to create, manipulate, query, and destroy contexts. The
contexts are also used now to handle setting debugging mode, and to hold an error reporting function for textual error
and debug messages. The API looks like:

projPJ pj_init_ctx(projCtx, int, char **);
projPJ pj_init_plus_ctx(projCtx, const char *);

projCtx pj_get_default_ctx(void);
projCtx pj_get_ctx(projPJ);
void pj_set_ctx(projPJ, projCtx);
projCtx pj_ctx_alloc(void);
void pj_ctx_free(projCtx);
int pj_ctx_get_errno(projCtx);
void pj_ctx_set_errno(projCtx, int);
void pj_ctx_set_debug(projCtx, int);
void pj_ctx_set_logger(projCtx, void (*)(void *, int, const char *));
void pj_ctx_set_app_data(projCtx, void *);
void *pj_ctx_get_app_data(projCtx);

Multithreaded applications are now expected to create a projCtx per thread using pj_ctx_alloc(). The context’s error
handlers, and app data may be modified if desired, but at the very least each context has an internal error value accessed
with pj_ctx_get_errno() as opposed to looking at pj_errno.

Note that pj_errno continues to exist, and it is set by pj_ctx_set_errno() (as well as setting the context specific er-
ror number), but pj_errno still suffers from the global shared problem between threads and should not be used by
multithreaded applications.

Note that pj_init_ctx(), and pj_init_plus_ctx() will assign the projCtx to the created projPJ object. Functions like
pj_transform(), pj_fwd() and pj_inv() will use the context of the projPJ for error reporting.

5.2. Transformations 109

PROJ.4 Documentation, Release 5.0.1

5.4.3 src/multistresstest.c

A small multi-threaded test program has been written (src/multistresstest.c) for testing multithreaded use of PROJ. It
performs a series of reprojections to setup a table expected results, and then it does them many times in several threads
to confirm that the results are consistent. At this time this program is not part of the builds but it can be built on linux
like:

gcc -g multistresstest.c .libs/libproj.so -lpthread -o multistresstest
./multistresstest

5.5 Reference

5.5.1 Data types

This section describes the numerous data types in use in PROJ.4. As a rule of thumb PROJ.4 data types are prefixed
with PJ_, or in one particular case, is simply called PJ . A few notable exceptions can be traced back to the very early
days of PROJ.4 when the PJ_ prefix was not consistenly used.

Transformation objects

PJ
Object containing everything related to a given projection or transformation. As a user of the PROJ.4 library
you are only exposed to pointers to this object and the contents is hidden behind the public API. PJ objects are
created with proj_create() and destroyed with proj_destroy().

PJ_DIRECTION
Enumeration that is used to convey in which direction a given transformation should be performed. Used in
transformation function call as described in the section on transformation functions.

Forward transformations are defined with the :c:

typedef enum proj_direction {
PJ_FWD = 1, /* Forward */
PJ_IDENT = 0, /* Do nothing */
PJ_INV = -1 /* Inverse */

} PJ_DIRECTION;

PJ_FWD
Perform transformation in the forward direction.

PJ_IDENT
Identity. Do nothing.

PJ_INV
Perform transformation in the inverse direction.

PJ_CONTEXT
Context objects enable safe multi-threaded usage of PROJ.4. Each PJ object is connected to a context
(if not specified, the default context is used). All operations within a context should be performed in the
same thread. PJ_CONTEXT objects are created with proj_context_create() and destroyed with
proj_context_destroy().

PJ_AREA
Opaque object describing an area in which a transformation is performed.

110 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

Note: This object is not fully implemented yet. It is to be used with proj_create_crs_to_crs() to
select the best transformation between the two input coordinate reference systems.

2 dimensional coordinates

Various 2-dimensional coordinate data types.

PJ_LP
Geodetic coordinate, latitude and longitude. Usually in radians.

typedef struct { double lam, phi; } PJ_LP;

double PJ_LP.lam
Longitude. Lambda.

double PJ_LP.phi
Latitude. Phi.

PJ_XY
2-dimensional cartesian coordinate.

typedef struct { double x, y; } PJ_XY;

double PJ_XY.x
Easting.

double PJ_XY.y
Northing.

PJ_UV
2-dimensional generic coordinate. Usually used when contents can be either a PJ_XY or PJ_LP.

typedef struct {double u, v; } PJ_UV;

double PJ_UV.u
Longitude or easting, depending on use.

double PJ_UV.v
Latitude or northing, depending on use.

3 dimensional coordinates

The following data types are the 3-dimensional equivalents to the data types above.

PJ_LPZ
3-dimensional version of PJ_LP. Holds longitude, latitude and a vertical component.

typedef struct { double lam, phi, z; } PJ_LPZ;

double PJ_LPZ.lam
Longitude. Lambda.

double PJ_LPZ.phi
Latitude. Phi.

5.5. Reference 111

PROJ.4 Documentation, Release 5.0.1

double PJ_LPZ.z
Vertical component.

PJ_XYZ
Cartesian coordinate in 3 dimensions. Extension of PJ_XY .

typedef struct { double x, y, z; } PJ_XYZ;

double PJ_XYZ.x
Easting or the X component of a 3D cartesian system.

double PJ_XYZ.y
Northing or the Y component of a 3D cartesian system.

double PJ_XYZ.z
Vertical component or the Z component of a 3D cartesian system.

PJ_UVW
3-dimensional extension of PJ_UV .

typedef struct {double u, v, w; } PJ_UVW;

double PJ_UVW.u
Longitude or easting, depending on use.

double PJ_UVW.v
Latitude or northing, depending on use.

double PJ_UVW.w
Vertical component.

Spatiotemporal coordinate types

The following data types are extensions of the triplets above into the time domain.

PJ_LPZT
Spatiotemporal version of PJ_LPZ.

typedef struct {
double lam;
double phi;
double z;
double t;

} PJ_LPZT;

double PJ_LPZT.lam
Longitude.

double PJ_LPZT.phi
Latitude

double PJ_LPZT.z
Vertical component.

double PJ_LPZT.t
Time component.

PJ_XYZT
Generic spatiotemporal coordinate. Usefull for e.g. cartesian coordinates with an attached time-stamp.

112 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

typedef struct {
double x;
double y;
double z;
double t;

} PJ_XYZT;

double PJ_XYZT.x
Easting or the X component of a 3D cartesian system.

double PJ_XYZT.y
Northing or the Y component of a 3D cartesian system.

double PJ_XYZT.z
Vertical or the Z component of a 3D cartesian system.

double PJ_XYZT.t
Time component.

PJ_UVWT
Spatiotemporal version of PJ_UVW .

typedef struct { double u, v, w, t; } PJ_UVWT;

double PJ_UVWT.e
First horizontal component.

double PJ_UVWT.n
Second horizontal component.

double PJ_UVWT.w
Vertical component.

double PJ_UVWT.t
Temporal component.

Ancillary types for geodetic computations

PJ_OPK
Rotations, for instance three euler angles.

typedef struct { double o, p, k; } PJ_OPK;

double PJ_OPK.o
First rotation angle, omega.

double PJ_OPK.p
Second rotation angle, phi.

double PJ_OPK.k
Third rotation angle, kappa.

5.5. Reference 113

PROJ.4 Documentation, Release 5.0.1

Complex coordinate types

PJ_COORD
General purpose coordinate union type, applicable in two, three and four dimensions. This is the default coor-
dinate datatype used in PROJ.

typedef union {
double v[4];
PJ_XYZT xyzt;
PJ_UVWT uvwt;
PJ_LPZT lpzt;
PJ_XYZ xyz;
PJ_UVW uvw;
PJ_LPZ lpz;
PJ_XY xy;
PJ_UV uv;
PJ_LP lp;

} PJ_COORD ;

double v[4]
Generic four-dimensional vector.

PJ_XYZT PJ_COORD.xyzt
Spatiotemporal cartesian coordinate.

PJ_UVWT PJ_COORD.uvwt
Spatiotemporal generic coordinate.

PJ_LPZT PJ_COORD.lpzt
Longitude, latitude, vertical and time components.

PJ_XYZ PJ_COORD.xyz
3-dimensional cartesian coordinate.

PJ_UVW PJ_COORD.uvw
3-dimensional generic coordinate.

PJ_LPZ PJ_COORD.lpz
Longitude, latitude and vertical component.

PJ_XY PJ_COORD.xy
2-dimensional cartesian coordinate.

PJ_UV PJ_COORD.uv
2-dimensional generic coordinate.

PJ_LP PJ_COORD.lp
Longitude and latitude.

114 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

Projection derivatives

PJ_FACTORS
Various cartographic properties, such as scale factors, angular distortion and meridian convergence. Calculated
with proj_factors().

typedef struct {
double meridional_scale;
double parallel_scale;
double areal_scale;

double angular_distortion;
double meridian_parallel_angle;
double meridian_convergence;

double tissot_semimajor;
double tissot_semiminor;

double dx_dlam;
double dx_dphi;
double dy_dlam;
double dy_dphi;

} PJ_FACTORS;

double PJ_FACTORS.meridional_scale
Meridional scale at coordinate (𝜆, 𝜑).

double PJ_FACTORS.parallel_scale
Parallel scale at coordinate (𝜆, 𝜑).

double PJ_FACTORS.areal_scale
Areal scale factor at coordinate (𝜆, 𝜑).

double PJ_FACTORS.angular_distortion
Angular distortion at coordinate (𝜆, 𝜑).

double PJ_FACTORS.meridian_parallel_angle

Meridian/parallel angle, 𝜃′, at coordinate (𝜆, 𝜑).

double PJ_FACTORS.meridian_convergence
Meridian convergence at coordinate (𝜆, 𝜑). Sometimes also described as grid declination.

double PJ_FACTORS.tissot_semimajor
Maximum scale factor.

double PJ_FACTORS.tissot_semiminor
Minimum scale factor.

double PJ_FACTORS.dx_dlam
Partial derivative 𝜕𝑥

𝜕𝜆 of coordinate (𝜆, 𝜑).

double PJ_FACTORS.dy_dlam
Partial derivative 𝜕𝑦

𝜕𝜆 of coordinate (𝜆, 𝜑).

double PJ_FACTORS.dx_dphi
Partial derivative 𝜕𝑥

𝜕𝜑 of coordinate (𝜆, 𝜑).

double PJ_FACTORS.dy_dphi
Partial derivative 𝜕𝑦

𝜕𝜑 of coordinate (𝜆, 𝜑).

5.5. Reference 115

PROJ.4 Documentation, Release 5.0.1

List structures

PJ_OPERATIONS
Description a PROJ.4 operation

struct PJ_OPERATIONS {
char *id; /* operation keyword */
PJ *(*proj)(PJ *); /* operation entry point */
char * const *descr; /* description text */

};

char *id
Operation keyword.

PJ *(*op)(PJ *)
Operation entry point.

char * const *
Description of operation.

PJ_ELLPS
Description of ellipsoids defined in PROJ.4

struct PJ_ELLPS {
char *id;
char *major;
char *ell;
char *name;

};

char *id
Keyword name of the ellipsoid.

char *major
Semi-major axis of the ellipsoid, or radius in case of a sphere.

char *ell
Elliptical parameter, e.g. rf=298.257 or b=6356772.2.

char *name
Name of the ellipsoid

PJ_UNITS
Distance units defined in PROJ.

struct PJ_UNITS {
char *id; /* units keyword */
char *to_meter; /* multiply by value to get meters */
char *name; /* comments */
double factor; /* to_meter factor in actual numbers */

};

char *id
Keyword for the unit.

char *to_meter
Text representation of the factor that converts a given unit to meters

char *name
Name of the unit.

116 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

double factor
Conversion factor that converts the unit to meters.

PJ_PRIME_MERIDIANS
Prime meridians defined in PROJ.

struct PJ_PRIME_MERIDIANS {
char *id;
char *defn;

};

char *id
Keyword for the prime meridian

char *def
Offset from Greenwich in DMS format.

Info structures

PJ_INFO
Struct holding information about the current instance of PROJ. Struct is populated by proj_info().

typedef struct {
int major;
int minor;
int patch;
const char *release;
const char *version;
const char *searchpath;

} PJ_INFO;

const char *PJ_INFO.release
Release info. Version number and release date, e.g. “Rel. 4.9.3, 15 August 2016”.

const char *PJ_INFO.version
Text representation of the full version number, e.g. “4.9.3”.

int PJ_INFO.major
Major version number.

int PJ_INFO.minor
Minor version number.

int PJ_INFO.patch
Patch level of release.

const char PJ_INFO.searchpath
Search path for PROJ. List of directories separated by semicolons (Windows) or colons (non-Windows),
e.g. “C:\Users\doctorwho;C:\OSGeo4W64\share\proj”. Grids and init files are looked for in directories in
the search path.

PJ_PROJ_INFO
Struct holding information about a PJ object. Populated by proj_pj_info(). The PJ_PROJ_INFO object
provides a view into the internals of a PJ , so once the PJ is destroyed or otherwise becomes invalid, so does
the PJ_PROJ_INFO

typedef struct {
const char *id;

(continues on next page)

5.5. Reference 117

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

const char *description;
const char *definition;
int has_inverse;
double accuracy;

} PJ_PROJ_INFO;

const char *PJ_PROJ_INFO.id
Short ID of the operation the PJ object is based on, that is, what comes afther the +proj= in a proj-string,
e.g. “merc”.

const char *PJ_PROJ_INFO.description
Long describes of the operation the PJ object is based on, e.g. “Mercator Cyl, Sph&Ell lat_ts=”.

const char *PJ_PROJ_INFO.definition
The proj-string that was used to create the PJ object with, e.g. “+proj=merc +lat_0=24 +lon_0=53
+ellps=WGS84”.

int PJ_PROJ_INFO.has_inverse
1 if an inverse mapping of the defined operation exists, otherwise 0.

double PJ_PROJ_INFO.accuracy
Expected accuracy of the transformation. -1 if unknown.

PJ_GRID_INFO
Struct holding information about a specific grid in the search path of PROJ. Populated with the function
proj_grid_info().

typedef struct {
char gridname[32];
char filename[260];
char format[8];
LP lowerleft;
LP upperright;
int n_lon, n_lat;
double cs_lon, cs_lat;

} PJ_GRID_INFO;

char PJ_GRID_INFO.gridname[32]
Name of grid, e.g. “BETA2007.gsb”.

char PJ_GRID_INFO
Full path of grid file, e.g. “C:\OSGeo4W64\share\proj\BETA2007.gsb”

char PJ_GRID_INFO.format[8]
File format of grid file, e.g. “ntv2”

LP PJ_GRID_INFO.lowerleft
Geodetic coordinate of lower left corner of grid.

LP PJ_GRID_INFO.upperright
Geodetic coordinate of upper right corner of grid.

int PJ_GRID_INFO.n_lon
Number of grid cells in the longitudinal direction.

int PJ_GRID_INFO.n_lat
Number of grid cells in the latitudianl direction.

double PJ_GRID_INFO.cs_lon
Cell size in the longitudinal direction. In radians.

118 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

double PJ_GRID_INFO.cs_lat
Cell size in the latitudinal direction. In radians.

PJ_INIT_INFO
Struct holding information about a specific init file in the search path of PROJ. Populated with the function
proj_init_info().

typedef struct {
char name[32];
char filename[260];
char version[32];
char origin[32];
char lastupdate[16];

} PJ_INIT_INFO;

char PJ_INIT_INFO.name[32]
Name of init file, e.g. “epsg”.

char PJ_INIT_INFO.filename[260]
Full path of init file, e.g. “C:\OSGeo4W64\share\proj\epsg”

char PJ_INIT_INFO.version[32]
Version number of init-file, e.g. “9.0.0”

char PJ_INIT_INFO.origin[32]
Originating entity of the init file, e.g. “EPSG”

char PJ_INIT_INFO.lastupdate
Date of last update of the init-file.

5.5.2 Functions

Threading contexts

PJ_CONTEXT* proj_context_create(void)
Create a new threading-context.

Returns PJ_CONTEXT*

void proj_context_destroy(PJ_CONTEXT *ctx)
Deallacote a threading-context.

Parameters

• ctx (PJ_CONTEXT*) – Threading context.

Transformation setup

PJ* proj_create(PJ_CONTEXT *ctx, const char *definition)
Create a transformation object from a proj-string.

Example call:

PJ *P = proj_create(0, "+proj=etmerc +lat_0=38 +lon_0=125 +ellps=bessel");

The returned PJ-pointer should be deallocated with proj_destroy().

Parameters

5.5. Reference 119

PROJ.4 Documentation, Release 5.0.1

• ctx (PJ_CONTEXT*) – Threading context.

• definition (const char*) – Proj-string of the desired transformation.

PJ* proj_create_argv(PJ_CONTEXT *ctx, int argc, char **argv)
Create transformation object with argc/argv-style initialization. For this application each parameter in the defin-
ing proj-string is an entry in argv.

Example call:

char *args[3] = {"proj=utm", "zone=32", "ellps=GRS80"};
PJ* P = proj_create_argv(0, 3, args);

The returned PJ-pointer should be deallocated with proj_destroy().

Parameters

• ctx (PJ_CONTEXT*) – Threading context

• argc (int) – Count of arguments in argv

• argv (char**) – Vector of strings with proj-string parameters, e.g. +proj=merc

Returns PJ*

PJ* proj_create_crs_to_crs(PJ_CONTEXT *ctx, const char *srid_from, const char *srid_to,
PJ_AREA *area)

Create a transformation object that is a pipeline between two known coordinate reference systems.

srid_from and srid_to should be the value part of a +init=... parameter set, i.e. “epsg:25833” or
“IGNF:AMST63”. Any projection definition that can be found in a init-file in PROJ_LIB is a valid input to
this function.

For now the function mimics the cs2cs app: An input and an output CRS is given and coordinates are transformed
via a hub datum (WGS84). This transformation strategy is referred to as “early-binding” by the EPSG. The
function can be extended to support “late-binding” transformations in the future without affecting users of the
function. When the function is extended to the late-binding approach the area argument will be used. For now
it is just a place-holder for a future improved implementation.

Example call:

PJ *P = proj_create_crs_to_crs(0, "epsg:25832", "epsg:25833", 0);

The returned PJ-pointer should be deallocated with proj_destroy().

Parameters

• ctx (PJ_CONTEXT*) – Threading context.

• srid_from (const char*) – Source SRID.

• srid_to (const char*) – Destination SRID.

• area (PJ_AREA) – Descriptor of the desired area for the transformation.

Returns PJ*

PJ* proj_destroy(PJ *P)
Deallocate a PJ transformation object.

Parameters

• P (PJ*) –

Returns PJ*

120 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

Coordinate transformation

PJ_COORD proj_trans(PJ *P, PJ_DIRECTION direction, PJ_COORD coord)
Transform a single PJ_COORD coordinate.

Parameters

• P (PJ*) –

• direction (PJ_DIRECTION) – Transformation direction.

• coord (PJ_COORD) – Coordinate that will be transformed.

Returns PJ_COORD

size_t proj_trans_generic(PJ *P, PJ_DIRECTION direction, double *x, size_t sx, size_t nx, double *y,
size_t sy, size_t ny, double *z, size_t sz, size_t nz, double *t, size_t st,
size_t nt)

Transform a series of coordinates, where the individual coordinate dimension may be represented by an array
that is either

1. fully populated

2. a null pointer and/or a length of zero, which will be treated as a fully populated array of zeroes

3. of length one, i.e. a constant, which will be treated as a fully populated array of that constant value

The strides, sx, sy, sz, st, represent the step length, in bytes, between consecutive elements of the corre-
sponding array. This makes it possible for proj_transform() to handle transformation of a large class of
application specific data structures, without necessarily understanding the data structure format, as in:

typedef struct {
double x, y;
int quality_level;
char surveyor_name[134];

} XYQS;

XYQS survey[345];
double height = 23.45;
size_t stride = sizeof (XYQS);

...

proj_trans_generic (
P, PJ_INV, sizeof(XYQS),
&(survey[0].x), stride, 345, /* We have 345 eastings */
&(survey[0].y), stride, 345, /* ...and 345 northings. */
&height, 1, /* The height is the constant 23.45 m */
0, 0 /* and the time is the constant 0.00 s */

);

This is similar to the inner workings of the deprecated pj_transform function, but the stride functionality has
been generalized to work for any size of basic unit, not just a fixed number of doubles.

In most cases, the stride will be identical for x, y, z, and t, since they will typically be either individual arrays
(stride = sizeof(double)), or strided views into an array of application specific data structures (stride = sizeof
(. . .)).

But in order to support cases where x, y, z, and t come from heterogeneous sources, individual strides, sx, sy,
sz, st, are used.

5.5. Reference 121

PROJ.4 Documentation, Release 5.0.1

Note: Since proj_transform() does its work in place, this means that even the supposedly constants (i.e.
length 1 arrays) will return from the call in altered state. Hence, remember to reinitialize between repeated calls.

Parameters

• P (PJ*) – Transformation object

• direction – Transformation direction

• x (double*) – Array of x-coordinates

• y (double*) – Array of y-coordinates

• z (double*) – Array of z-coordinates

• t (double*) – Array of t-coordinates

• sx (size_t) – Step lenght, in bytes, between consecutive elements of the corresponding
array

• nx (size_t) – Number of elements in the corresponding array

• sy (size_t) – Step lenght, in bytes, between consecutive elements of the corresponding
array

• nv (size_t) – Number of elements in the corresponding array

• sz (size_t) – Step lenght, in bytes, between consecutive elements of the corresponding
array

• nz (size_t) – Number of elements in the corresponding array

• st (size_t) – Step lenght, in bytes, between consecutive elements of the corresponding
array

• nt (size_t) – Number of elements in the corresponding array

Returns Number of transformations succesfully completed

size_t proj_trans_array(PJ *P, PJ_DIRECTION direction, size_t n, PJ_COORD *coord)
Batch transform an array of PJ_COORD.

Parameters

• P (PJ*) –

• direction (PJ_DIRECTION) – Transformation direction

• n (size_t) – Number of cordinates in coord

Returns size_t 0 if all observations are transformed without error, otherwise returns error number

122 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

Error reporting

int proj_errno(PJ *P)
Get a reading of the current error-state of P. An non-zero error codes indicates an error either with the transfor-
mation setup or during a transformation.

Param PJ* P: Transformation object.

Returns int

void proj_errno_set(PJ *P, int err)

Change the error-state of P to err.

param PJ* P Transformation object.

param int err Error number.

int proj_errno_reset(PJ *P)
Clears the error number in P, and bubbles it up to the context.

Example:

void foo (PJ *P) {
int last_errno = proj_errno_reset (P);

do_something_with_P (P);

/* failure - keep latest error status */
if (proj_errno(P))

return;
/* success - restore previous error status */
proj_errno_restore (P, last_errno);
return;

}

Param PJ* P: Transformation object.

Returns int Returns the previous value of the errno, for convenient reset/restore operations.

void proj_errno_restore(PJ *P, int err)
Reduce some mental impedance in the canonical reset/restore use case: Basically, proj_errno_restore()
is a synonym for proj_errno_set(), but the use cases are very different: set indicate an error to higher
level user code, restore passes previously set error indicators in case of no errors at this level.

Hence, although the inner working is identical, we provide both options, to avoid some rather confusing real
world code.

See usage example under proj_errno_reset()

Parameters

• P (PJ*) – Transformation object.

• err (int) – Error code.

5.5. Reference 123

PROJ.4 Documentation, Release 5.0.1

Info functions

PJ_INFO proj_info(void)
Get information about the current instance of the PROJ library.

Returns PJ_INFO

PJ_PROJ_INFO proj_pj_info(const PJ *P)
Get information about a specific transformation object, P.

Parameters

• P (const PJ*) – Transformation object

Returns PJ_PROJ_INFO

PJ_GRID_INFO proj_grid_info(const char *gridname)
Get information about a specific grid.

Parameters

• gridname (const char*) – Gridname in the PROJ searchpath

Returns PJ_GRID_INFO

PJ_INIT_INFO proj_init_info(const char *initname)
Get information about a specific init file.

Parameters

• initname (const char*) – Init file in the PROJ searchpath

Returns PJ_INIT_INFO

Lists

const PJ_OPERATIONS* proj_list_operations(void)
Get a pointer to an array of all operations in PROJ. The last entry of the returned array is a NULL-entry. The
array is statically allocated and does not need to be freed after use.

Print a list of all operations in PROJ:

PJ_OPERATIONS *ops;
for (ops = proj_list_operations(); ops->id; ++ops)

printf("%s\n", ops->id);

Returns PJ_OPERATIONS*

const PJ_ELLPS* proj_list_ellps(void)
Get a pointer to an array of ellipsoids defined in PROJ. The last entry of the returned array is a NULL-entry.
The array is statically allocated and does not need to be freed after use.

Returns PJ_ELLPS*

const PJ_UNITS* proj_list_units(void)
Get a pointer to an array of distance units defined in PROJ. The last entry of the returned array is a NULL-entry.
The array is statically allocated and does not need to be freed after use.

Returns PJ_UNITS*

124 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

const PJ_PRIME_MERIDIANS* proj_list_prime_meridians(void)
Get a pointer to an array of prime meridians defined in PROJ. The last entry of the returned array is a NULL-
entry. The array is statically allocated and does not need to be freed after use.

Returns PJ_PRIME_MERIDIANS*

Distances

double proj_lp_dist(const PJ *P, PJ_COORD a, PJ_COORD b)
Calculate geodesic distance between two points in geodetic coordinates.

Parameters

• P (PJ*) – Transformation object

• a (PJ_COORD) – Coordinate of first point

• b (PJ_COORD) – Coordinate of second point

Returns double Distance between a and b in meters.

double proj_lp_dist(const PJ *P, PJ_COORD a, PJ_COORD b)
Calculate geodesic distance between two points in geodetic coordinates.

Parameters

• P (PJ*) – Transformation object

• a (PJ_COORD) – Coordinate of first point

• b (PJ_COORD) – Coordinate of second point

Returns double Distance between a and b in meters.

double proj_xy_dist(PJ_COORD a, PJ_COORD b)
Calculate 2-dimensional euclidean between two projected coordinates.

Parameters

• a (PJ_COORD) – First coordinate

• b (PJ_COORD) – Second coordinate

Returns double Distance between a and b in meters.

double proj_xyz_dist(PJ_COORD a, PJ_COORD b)
Calculate 3-dimensional euclidean between two projected coordinates.

Parameters

• a (PJ_COORD) – First coordinate

• b (PJ_COORD) – Second coordinate

Returns double Distance between a and b in meters.

5.5. Reference 125

PROJ.4 Documentation, Release 5.0.1

Various

PJ_COORD proj_coord(double x, double y, double z, double t)
Initializer for the PJ_COORD union. The function is shorthand for the otherwise convoluted assignment. Equiv-
alent to

PJ_COORD c = {{10.0, 20.0, 30.0, 40.0}};

or

PJ_COORD c;
// Assign using the PJ_XYZT struct in the union
c.xyzt.x = 10.0;
c.xyzt.y = 20.0;
c.xyzt.z = 30.0;
c.xyzt.t = 40.0;

Since PJ_COORD is a union of structs, the above assignment can also be expressed in terms of the other types
in the union, e.g. PJ_UVWT or PJ_LPZT.

Parameters

• x (double) – 1st component in a PJ_COORD

• y (double) – 2nd component in a PJ_COORD

• z (double) – 3rd component in a PJ_COORD

• t (double) – 4th component in a PJ_COORD

Returns PJ_COORD

double proj_roundtrip(PJ *P, PJ_DIRECTION direction, int n, PJ_COORD *coord)
Measure internal consistency of a given transformation. The function performs n round trip transformations
starting in either the forward or reverse direction. Returns the euclidean distance of the starting point coo
and the resulting coordinate after n iterations back and forth.

Parameters

• P (const PJ*) –

• direction (PJ_DIRECTION) – Starting direction of transformation

• n (int) – Number of roundtrip transformations

• coord (PJ_COORD) – Input coordinate

Returns double Distance between original coordinate and the resulting coordinate after n trans-
formation iterations.

PJ_FACTORS proj_factors(PJ *P, PJ_COORD lp)
Calculate various cartographic properties, such as scale factors, angular distortion and meridian convergence.
Depending on the underlying projection values will be calculated either numerically (default) or analytically.

The function also calculates the partial derivatives of the given coordinate.

Parameters

• P (const PJ*) – Transformation object

• lp (const PJ_COORD) – Geodetic coordinate

Returns PJ_FACTORS

126 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

double proj_torad(double angle_in_degrees)
Convert degrees to radians.

Parameters

• angle_in_degrees (double) – Degrees

Returns double Radians

double proj_todeg(double angle_in_radians)
Convert radians to degrees

Parameters

• angle_in_radians (double) – Radians

Returns double Degrees

double proj_dmstor(const char *is, char **rs)
Convert string of degrees, minutes and seconds to radians. Works similarly to the C standard library function
strtod().

Parameters

• is (const char*) – Value to be converted to radians

• rs – Reference to an already allocated char*, whose value is set by the function to the next
character in is after the numerical value.

char *proj_rtodms(char *s, double r, int pos, int neg)
Convert radians to string representation of degrees, minutes and seconds.

Parameters

• s (char*) – Buffer that holds the output string

• r (double) – Value to convert to dms-representation

• pos (int) – Character denoting positive direction, typically ‘N’ or ‘E’.

• neg (int) – Character denoting negative direction, typically ‘S’ or ‘W’.

Returns char* Pointer to output buffer (same as s)

PJ_COORD proj_geocentric_latitude(const PJ *P, PJ_DIRECTION direction, PJ_COORD co-
ord)

Convert from geographical latitude to geocentric latitude.

Parameters

• P (const PJ*) – Transformation object

• direction (PJ_DIRECTION) – Starting direction of transformation

• coord (PJ_COORD) – Coordinate

Returns PJ_COORD Converted coordinate

int proj_angular_input(PJ *P, enum PJ_DIRECTION dir)
Check if a operation expects angular input.

Parameters

• P (const PJ*) – Transformation object

• direction (PJ_DIRECTION) – Starting direction of transformation

Returns int 1 if angular input is expected, otherwise 0

5.5. Reference 127

PROJ.4 Documentation, Release 5.0.1

int proj_angular_output(PJ *P, enum PJ_DIRECTION dir)
Check if an operation returns angular output.

param P Transformation object

type P const PJ*

param direction Starting direction of transformation

type direction PJ_DIRECTION

returns int 1 if angular output is returned, otherwise 0

5.5.3 Deprecated API

Contents

• Deprecated API

– Introduction

– Example

– API Functions

* pj_transform

* pj_init_plus

* pj_free

* pj_is_latlong

* pj_is_geocent

* pj_get_def

* pj_latlong_from_proj

* pj_set_finder

* pj_set_searchpath

* pj_deallocate_grids

* pj_strerrno

* pj_get_errno_ref

* pj_get_release

Introduction

Procedure pj_init() selects and initializes a cartographic projection with its argument control parameters. argc is
the number of elements in the array of control strings argv that each contain individual cartographic control keyword
assignments (+ proj arguments). The list must contain at least the proj=projection and Earth’s radius or elliptical
parameters. If the initialization of the projection is successful a valid address is returned otherwise a NULL value.

The pj_init_plus() function operates similarly to pj_init() but takes a single string containing the definition,
with each parameter prefixed with a plus sign. For example +proj=utm +zone=11 +ellps=WGS84.

128 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

Once initialization is performed either forward or inverse projections can be performed with the returned value of
pj_init() used as the argument proj. The argument structure projUV values u and v contain respective longitude
and latitude or x and y. Latitude and longitude are in radians. If a projection operation fails, both elements of projUV
are set to HUGE_VAL (defined in math.h).

Note: all projections have a forward mode, but some do not have an inverse projection. If the projection does not have
an inverse the projPJ structure element inv will be NULL.

The pj_transform function may be used to transform points between the two provided coordinate systems. In
addition to converting between cartographic projection coordinates and geographic coordinates, this function also
takes care of datum shifts if possible between the source and destination coordinate system. Unlike pj_fwd()
and pj_inv() it is also allowable for the coordinate system definitions (projPJ *) to be geographic coordinate
systems (defined as +proj=latlong). The x, y and z arrays contain the input values of the points, and are replaced
with the output values. The function returns zero on success, or the error number (also in pj_errno) on failure.

Memory associated with the projection may be freed with pj_free().

Example

The following program reads latitude and longitude values in decimal degrees, performs Mercator projection with a
Clarke 1866 ellipsoid and a 33° latitude of true scale and prints the projected cartesian values in meters:

#include <proj_api.h>

main(int argc, char **argv) {
projPJ pj_merc, pj_latlong;
double x, y;

if (!(pj_merc = pj_init_plus("+proj=merc +ellps=clrk66 +lat_ts=33")))
exit(1);

if (!(pj_latlong = pj_init_plus("+proj=latlong +ellps=clrk66")))
exit(1);

while (scanf("%lf %lf", &x, &y) == 2) {
x *= DEG_TO_RAD;
y *= DEG_TO_RAD;
p = pj_transform(pj_latlong, pj_merc, 1, 1, &x, &y, NULL);
printf("%.2f\t%.2f\n", x, y);

}
exit(0);

}

For this program, an input of -16 20.25 would give a result of -1495284.21 1920596.79.

API Functions

pj_transform

int pj_transform(projPJ srcdefn,
projPJ dstdefn,
long point_count,
int point_offset,
double *x,
double *y,
double *z);

5.5. Reference 129

PROJ.4 Documentation, Release 5.0.1

Transform the x/y/z points from the source coordinate system to the destination coordinate system.

srcdefn: source (input) coordinate system.

dstdefn: destination (output) coordinate system.

point_count: the number of points to be processed (the size of the x/y/z arrays).

point_offset: the step size from value to value (measured in doubles) within the x/y/z arrays - normally 1 for a
packed array. May be used to operate on xyz interleaved point arrays.

x/y/z: The array of X, Y and Z coordinate values passed as input, and modified in place for output. The Z may
optionally be NULL.

return: The return is zero on success, or a PROJ.4 error code.

The pj_transform() function transforms the passed in list of points from the source coordinate system to the
destination coordinate system. Note that geographic locations need to be passed in radians, not decimal degrees, and
will be returned similarly. The z array may be passed as NULL if Z values are not available.

If there is an overall failure, an error code will be returned from the function. If individual points fail to transform -
for instance due to being over the horizon - then those x/y/z values will be set to HUGE_VAL on return. Input values
that are HUGE_VAL will not be transformed.

pj_init_plus

projPJ pj_init_plus(const char *definition);

This function converts a string representation of a coordinate system definition into a projPJ object suitable for use
with other API functions. On failure the function will return NULL and set pj_errno. The definition should be of
the general form +proj=tmerc +lon_0 +datum=WGS84. Refer to PROJ.4 documentation and the Geodetic
transformation notes for additional detail.

Coordinate system objects allocated with pj_init_plus() should be deallocated with pj_free().

pj_free

void pj_free(projPJ pj);

Frees all resources associated with pj.

pj_is_latlong

int pj_is_latlong(projPJ pj);

Returns TRUE if the passed coordinate system is geographic (proj=latlong).

130 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

pj_is_geocent

int pj_is_geocent(projPJ pj);``

Returns TRUE if the coordinate system is geocentric (proj=geocent).

pj_get_def

char *pj_get_def(projPJ pj, int options);``

Returns the PROJ.4 initialization string suitable for use with pj_init_plus() that would produce this coordinate
system, but with the definition expanded as much as possible (for instance +init= and +datum= definitions).

pj_latlong_from_proj

projPJ pj_latlong_from_proj(projPJ pj_in);``

Returns a new coordinate system definition which is the geographic coordinate (lat/long) system underlying pj_in.

pj_set_finder

void pj_set_finder(const char *(*new_finder)(const char *));``

Install a custom function for finding init and grid shift files.

pj_set_searchpath

void pj_set_searchpath (int count, const char **path);``

Set a list of directories to search for init and grid shift files.

pj_deallocate_grids

void pj_deallocate_grids(void);``

Frees all resources associated with loaded and cached datum shift grids.

pj_strerrno

char *pj_strerrno(int);``

Returns the error text associated with the passed in error code.

5.5. Reference 131

PROJ.4 Documentation, Release 5.0.1

pj_get_errno_ref

int *pj_get_errno_ref(void);``

Returns a pointer to the global pj_errno error variable.

pj_get_release

const char *pj_get_release(void);``

Returns an internal string describing the release version.

Obsolete Functions

XY pj_fwd(LP lp, PJ *P);

LP pj_inv(XY xy, PJ *P);

projPJ pj_init(int argc, char **argv);

5.6 Using PROJ in CMake projects

The recommended way to use the PROJ library in a CMake project is to link to the imported library target
${PROJ4_LIBRARIES} provided by the CMake configuration which comes with the library. Typical usage is:

find_package(PROJ4)

target_link_libraries(MyApp ${PROJ4_LIBRARIES})

By adding the imported library target ${PROJ4_LIBRARIES} to the target link libraries, CMake will also pass the
include directories to the compiler. This requires that you use CMake version 2.8.11 or later. If you are using an older
version of CMake, then add

include_directories(${PROJ4_INCLUDE_DIRS})

The CMake command find_package will look for the configuration in a number of places. The lookup can be
adjusted for all packages by setting the cache variable or environment variable CMAKE_PREFIX_PATH. In particular,
CMake will consult (and set) the cache variable PROJ4_DIR.

5.7 Language bindings

PROJ bindings are available for a number of different development platforms.

132 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

5.7.1 Python

pyproj: Python interface (wrapper for PROJ)

5.7.2 Ruby

proj4rb: Bindings for PROJ in ruby

5.7.3 TCL

proj4tcl: Bindings for PROJ in tcl (critcl source)

5.7.4 MySQL

fProj4: Bindings for PROJ in MySQL

5.7.5 Excel

proj.xll: Excel add-in for PROJ map projections

5.7.6 Visual Basic

PROJ VB Wrappers: By Eric G. Miller.

5.8 Version 4 to 5 API Migration

This is a transition guide for developers wanting to migrate their code to use PROJ version 5.

5.8.1 Background

Before we go on, a bit of background is needed. The new API takes a different view of the world than the old because
it is needed in order to obtain high accuracy transformations. The old API is constructed in such a way that any
transformation between two coordinate reference systems must pass through the ill-defined WGS84 reference frame,
using it as a hub. The new API does away with this limitation to transformations in PROJ. It is still possible to do that
type of transformations but in many cases there will be a better alternative.

The world view represented by the old API is always sufficient if all you care about is meter level accuracy - and in
many cases it will provide much higher accuracy than that. But the view that “WGS84 is the true foundation of the
world, and everything else can be transformed natively to and from WGS84” is inherently flawed.

First and foremost because any time WGS84 is mentioned, you should ask yourself “Which of the six WGS84 real-
izations are we talking about here?”.

Second, because for many (especially legacy) systems, it may not be straightforward to transform to WGS84 (or
actually ITRF-something, ETRS-something or NAD-something which appear to be the practical meaning of the term
WGS84 in everyday PROJ related work), while centimeter-level accurate transformations may exist between pairs of
older systems.

5.8. Version 4 to 5 API Migration 133

http://pypi.python.org/pypi/pyproj
http://proj4rb.rubyforge.org
http://wiki.tcl.tk/41270
http://sourceforge.net/projects/mysqlscientific/files/fPROJ4/
https://github.com/jbuonagurio/proj.xll
http://ftp.dfg.ca.gov/Public/BDB/Tools/proj4/proj_api.zip

PROJ.4 Documentation, Release 5.0.1

The concept of a hub reference frame (“datum”) is not inherently bad, but in many cases you need to handle and select
that datum with more care than the old API allows. The primary aim of the new API is to allow just that. And to
do that, you must realize that the world is inherently 4 dimensional. You may in many cases assume one or more
of the coordinates to be constant, but basically, to obtain geodetic accuracy transformations, you need to work in 4
dimensions.

Now, having described the background for introducing the new API, let’s try to show how to use it. First note that
in order to go from system A to system B, the old API starts by doing an inverse transformation from system A to
WGS84, then does a forward transformation from WGS84 to system B.

With cs2cs being the command line interface to the old API, and cct being the same for the new, this example of
doing the same thing in both world views will should give an idea of the differences:

$ echo 300000 6100000 | cs2cs +proj=utm +zone=33 +ellps=GRS80 +to +proj=utm +zone=32
→˓+ellps=GRS80
683687.87 6099299.66 0.00

$ echo 300000 6100000 0 0 | cct +proj=pipeline +step +inv +proj=utm +zone=33
→˓+ellps=GRS80 +step +proj=utm +zone=32 +ellps=GRS80
683687.8667 6099299.6624 0.0000 0.0000

Lookout for the +inv in the first +step, indicating an inverse transform.

5.8.2 Code example

The difference between the old and new API is shown here with a few examples. Below we implement the same
program with the two different API’s. The program reads input latitude and longitude from the command line and
convert them to projected coordinates with the Mercator projection.

We start by writing the program for PROJ v. 4:

#include <proj_api.h>

main(int argc, char **argv) {
projPJ pj_merc, pj_latlong;
double x, y;

if (!(pj_merc = pj_init_plus("+proj=merc +ellps=clrk66 +lat_ts=33")))
return 1;

if (!(pj_latlong = pj_init_plus("+proj=latlong +ellps=clrk66")))
return 1;

while (scanf("%lf %lf", &x, &y) == 2) {
x *= DEG_TO_RAD;
y *= DEG_TO_RAD;
p = pj_transform(pj_latlong, pj_merc, 1, 1, &x, &y, NULL);
printf("%.2f\t%.2f\n", x, y);

}

return 0;
}

The same program implemented using PROJ v. 5:

#include <proj.h>

(continues on next page)

134 Chapter 5. Development

PROJ.4 Documentation, Release 5.0.1

(continued from previous page)

main(int argc, char **argv) {
PJ *P;
PJ_COORD c;

P = proj_create(PJ_DEFAULT_CTX, "+proj=merc +ellps=clrk66 +lat_ts=33");
if (P==0)

return 1;

while (scanf("%lf %lf", &c.lp.lam, &c.lp.phi) == 2) {
c.lp.lam = proj_todeg(c.lp.lam);
c.lp.phi = proj_todeg(c.lp.phi);
c = proj_trans(P, PJ_FWD, c);
printf("%.2f\t%.2f\n", c.xy.x, c.xy.y);

}

}

Looking at the two different programs, there’s a few immediate differences that catches the eye. First off, the included
header file describing the API has changed from proj_api.h to simply proj.h. All functions in proj.h belongs
to the proj_ namespace.

With the new API also comes new datatypes. E.g. the transformation object projPJ which has been changed to a
pointer of type PJ. This is done to highlight the actual nature of the object, instead of hiding it away behind a typedef.
New data types for handling coordinates have also been introduced. In the above example we use the PJ_COORD,
which is a union of various types. The benefit of this is that it is possible to use the various structs in the union to
communicate what state the data is in at different points in the program. For instance as in the above example where
the coordinate is read from STDIN as a geodetic coordinate, communicated to the reader of the code by using the
c.lp struct. After it has been projected we print it to STDOUT by accessing the individual elements in c.xy to
illustrate that the coordinate is now in projected space. Data types are prefixed with PJ_.

The final, and perhaps biggest, change is that the fundamental concept of transformations in PROJ are now handled
in a single transformation object (PJ) and not by stating the source and destination systems as previously. It is
of course still possible to do just that, but the transformation object now captures the whole transformation from
source to destination in one. In the example with the old API the source system is described as +proj=latlon
+ellps=clrk66 and the destination system is described as +proj=merc +ellps=clrk66 +lat_ts=33.
Since the Mercator projection accepts geodetic coordinates as its input, the description of the source in this case is
superflous. We use that to our advantage in the new API and simply state the destination. This is simple at a glance,
but is actually a big conceptual change. We are now focused on the path between two systems instead of what the
source and destination systems are.

5.8. Version 4 to 5 API Migration 135

PROJ.4 Documentation, Release 5.0.1

5.8.3 Function mapping from old to new API

Old API functions New API functions
pj_fwd proj_trans
pj_inv proj_trans
pj_fwd3 proj_trans
pj_inv3 proj_trans
pj_transform proj_trans_array or proj_trans_generic
pj_init proj_create
pj_init_plus proj_create
pj_free proj_destroy
pj_is_latlong proj_angular_output
pj_is_geocent proj_angular_outout
pj_get_def proj_pj_info
pj_latlong_from_proj No equivalent
pj_set_finder No equivalent
pj_set_searchpath No equivalent
pj_deallocate_grids No equivalent
pj_strerrno No equivalent
pj_get_errno_ref proj_errno
pj_get_release proj_info

136 Chapter 5. Development

CHAPTER

SIX

FAQ

Contents

• FAQ

– Where can I find the list of projections and their arguments?

– How do I build/configure PROJ to support datum shifting?

– How do I debug problems with NAD27/NAD83 datum shifting?

– How do I use EPSG coordinate system codes with PROJ?

– How do I use 3 parameter and 7 parameter datum shifting

– Does PROJ work in different international numeric locales?

– Changing Ellipsoid / Why can’t I convert from WGS84 to Google Earth / Virtual Globe Mercator?

– Why do I get different results with 4.5.0 and 4.6.0?

– How do I calculate distances/directions on the surface of the earth?

– What is the HEALPix projection and how can I use it?

– What is the rHEALPix projection and how can I use it?

– What options does PROJ allow for the shape of the Earth (geodesy)?

– What if I want a spherical Earth?

– How do I change the radius of the Earth? How do I use PROJ for work on Mars?

– How do I do False Eastings and False Northings?

6.1 Where can I find the list of projections and their arguments?

There is no simple single location to find all the required information. The !PostScript/PDF documents listed on the
[http://trac.osgeo.org/proj/wiki main] PROJ page under documentation are the authoritative source but projections and
options are spread over several documents in a form more related to their order of implementation than anything else.

The ‘”proj”’ command itself can report the list of projections using the ‘”-lp”’ option, the list of ellipsoids with the
‘”-le”’ option, the list of units with the ‘”-lu”’ option, and the list of built-in datums with the ‘”-ld”’ option.

The [http://www.remotesensing.org/geotiff/proj_list/ GeoTIFF Projections Pages] include most of the common PROJ
projections, and a definition of the projection specific options for each.

137

http://trac.osgeo.org/proj/wiki
http://www.remotesensing.org/geotiff/proj_list/

PROJ.4 Documentation, Release 5.0.1

• How do I do datum shifts between NAD27 and NAD83?

While the ‘”nad2nad”’ program can be used in some cases, the ‘”cs2cs”’ is now the preferred mechanism. The
following example demonstrates using the default shift parameters for NAD27 to NAD83:

% cs2cs +proj=latlong +datum=NAD27 +to +proj=latlong +datum=NAD83 -117 30

producing:

117d0'2.901"W 30d0'0.407"N 0.000

In order for datum shifting to work properly the various grid shift files must be available. See below. More details are
available in the [wiki:GenParms#nadgrids-GridBasedDatumAdjustments General Parameters] document.

6.2 How do I build/configure PROJ to support datum shifting?

After downloading and unpacking the PROJ source, also download and unpack the set of datum shift files. See
Download for instructions how to fetch and install these files

On Windows the extra nadshift target must be used. For instance nmake /f makefile.vc nadshift in the
proj/src directory.

A default build and install on Unix will normally build knowledge of the directory where the grid shift files are
installed into the PROJ library (usually /usr/local/share/proj). On Windows the library is normally built thinking that
C:PROJNAD is the installed directory for the grid shift files. If the built in concept of the PROJ data directory is
incorrect, the PROJ_LIB environment can be defined with the correct directory.

6.3 How do I debug problems with NAD27/NAD83 datum shifting?

1. Verify that you have the binary files (eg. /usr/local/share/proj/conus) installed on your system. If not, see the
previous question.

2. Try a datum shifting operation in relative isolation, such as with the cs2cs command listed above. Do you
get reasonable results? If not it is likely the grid shift files aren’t being found. Perhaps you need to define
PROJ_LIB?

3. The cs2cs command and the underlying pj_transform() API know how to do a grid shift as part of a more
complex coordinate transformation; however, it is imperative that both the source and destination coordinate
system be defined with appropriate datum information. That means that implicitly or explicitly there must
be a +datum= clause, a +nadgrids= clause or a +towgs84= clause. For instance cs2cs +proj=latlong
+datum=NAD27 +to +proj=latlong +ellps=WGS84 won’t work because defining the output coor-
dinate system as using the ellipse WGS84 isn’t the same as defining it to use the datum WGS84 (use +da-
tum=WGS84). If either the input or output are not identified as having a datum, the datum shifting (and ellipsoid
change) step is just quietly skipped!

4. The PROJ_DEBUG environment can be defined (any value) to force extra output from the PROJ library to stderr
(the text console normally) with information on what data files are being opened and in some cases why a
transformation fails.

export PROJ_DEBUG=ON
cs2cs ...

Note: PROJ_DEBUG support is not yet very mature in the PROJ library.

138 Chapter 6. FAQ

PROJ.4 Documentation, Release 5.0.1

5. The -v flag to cs2cs can be useful in establishing more detail on what parameters being used internally for a
coordinate system. This will include expanding the definition of +datum clause.

6.4 How do I use EPSG coordinate system codes with PROJ?

There is somewhat imperfect translation between 2d geographic and projected coordinate system codes and PROJ
descriptions of the coordinate system available in the epsg definition file that normally lives in the proj/nad directory.
If installed (it is installed by default on Unix), it is possible to use EPSG numbers like this:

% cs2cs -v +init=epsg:26711
---- From Coordinate System ----
#Universal Transverse Mercator (UTM)
Cyl, Sph
zone= south
+init=epsg:26711 +proj=utm +zone=11 +ellps=clrk66 +datum=NAD27 +units=m
+no_defs +nadgrids=conus,ntv1_can.dat
#--- following specified but NOT used
+ellps=clrk66
---- To Coordinate System ----
#Lat/long (Geodetic)
#
+proj=latlong +datum=NAD27 +ellps=clrk66 +nadgrids=conus,ntv1_can.dat

The proj/nad/epsg file can be browsed and searched in a text editor for coordinate systems. There are known to be
problems with some coordinate systems, and any coordinate systems with odd axes, a non-greenwich prime meridian
or other quirkiness are unlikely to work properly. Caveat Emptor!

6.5 How do I use 3 parameter and 7 parameter datum shifting

Datum shifts can be approximated with 3 and 7 parameter transformations. Their use is more fully described in the
[wiki:GenParms#towgs84-DatumtransformationtoWGS84 towgs84] parameter discussion.

6.6 Does PROJ work in different international numeric locales?

No. PROJ makes extensive use of sprintf() and atof() internally to translate numeric values. If a locale is in effect that
modifies formatting of numbers, altering the role of commas and periods in numbers, then PROJ will not work. This
problem is common in some European locales.

On unix-like platforms, this problem can be avoided by forcing the use of the default numeric locale by setting the
LC_NUMERIC environment variable to C.

$ export LC_NUMERIC=C
$ proj ...

Note: NOTE: Per ticket #49, in PROJ 4.7.0 and later pj_init() operates with locale overridden to “C” to avoid most
locale specific processing for applications using the API. Command line tools may still have issues.

6.4. How do I use EPSG coordinate system codes with PROJ? 139

PROJ.4 Documentation, Release 5.0.1

6.7 Changing Ellipsoid / Why can’t I convert from WGS84 to Google
Earth / Virtual Globe Mercator?

The coordinate system definition for Google Earth, and Virtual Globe Mercator is as follows, which uses a sphere as
the earth model for the Mercator projection.

+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0
+x_0=0.0 +y_0=0 +k=1.0 +units=m +no_defs

But, if you do something like:

cs2cs +proj=latlong +datum=WGS84
+to +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0

+x_0=0.0 +y_0=0 +k=1.0 +units=m +no_defs

to convert between WGS84 and mercator on the sphere there will be substantial shifts in the Y mercator coordinates.
This is because internally cs2cs is having to adjust the lat/long coordinates from being on the sphere to being on the
WGS84 datum which has a quite differently shaped ellipsoid.

In this case, and many other cases using spherical projections, the desired approach is to actually treat the lat/long
locations on the sphere as if they were on WGS84 without any adjustments when using them for converting to other
coordinate systems. The solution is to “trick” PROJ into applying no change to the lat/long values when going to
(and through) WGS84. This can be accomplished by asking PROJ to use a null grid shift file for switching from your
spherical lat/long coordinates to WGS84.

cs2cs +proj=latlong +datum=WGS84 \
+to +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 \
+x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs

Note the strategic addition of +nadgrids=@null to the spherical projection definition.

Similar issues apply with many other datasets distributed with projections based on a spherical earth model - such
as many NASA datasets. This coordinate system is now known by the EPSG code 3857 and has in the past been
known as EPSG:3785 and EPSG:900913. When using this coordinate system with GDAL/OGR it is helpful to include
the +wktext so the exact PROJ string will be preserved in the WKT representation (otherwise key parameters like
+nadgrids=@null will be dropped):

+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0
+units=m +nadgrids=@null +wktext +no_defs

6.8 Why do I get different results with 4.5.0 and 4.6.0?

The default datum application behavior changed with the 4.6.0 release. PROJ will now only apply a datum shift if
both the source and destination coordinate system have valid datum shift information.

From the PROJ 4.6.0 Release Notes (in NEWS):

• MAJOR: Rework pj_transform() to avoid applying ellipsoid to ellipsoid transformations as a datum shift
when no datum info is available.

140 Chapter 6. FAQ

mailto:+nadgrids=@null

PROJ.4 Documentation, Release 5.0.1

6.9 How do I calculate distances/directions on the surface of the
earth?

These are called geodesic calculations. There is a page about it here: Geodesic calculations.

6.10 What is the HEALPix projection and how can I use it?

The HEALPix projection is area
preserving and can be used
with a spherical and ellipsoidal
model. It was initially de-
veloped for mapping cosmic
background microwave radia-
tion. The image below is
the graphical representation of
the mapping and consists of
eight isomorphic triangular in-
terrupted map graticules. The
north and south contains four
in which straight meridians con-
verge polewards to a point
and unequally spaced horizon-
tal parallels. HEALPix pro-
vides a mapping in which points
of equal latitude and equally
spaced longitude are mapped
to points of equal latitude and
equally spaced longitude with
the module of the polar inter-
ruptions. ||

To run a forward HEALPix projection on a unit sphere model, use the following command:

proj +proj=healpix +lon_0=0 +a=1 -E <<EOF
0 0
EOF

Output of the above command.

0 0 0.00 0.00

6.11 What is the rHEALPix projection and how can I use it?

rHEALPix is a projection based
on the HEALPix projection. The
implementation of rHEALPix
uses the HEALPix projection.
The rHEALPix combines the
peaks of the HEALPix into a
square. The square’s position

6.9. How do I calculate distances/directions on the surface of the earth? 141

PROJ.4 Documentation, Release 5.0.1

can be translated and rotated
across the x-axis which is a novel
approach for the rHEALPix pro-
jection. The initial intention
of using rHEALPix in the Spa-
tial Computation Engine Sci-
ence Collaboration Environment
(SCENZGrid).

To run a inverse rHEALPix pro-
jection on a WGS84 ellipsoidal

model, use the following command:

proj +proj=rhealpix -f '%.2f' -I +lon_0=0 +a=1 +ellps=WGS84 +npole=0 +spole=0 -E <<EOF
0 0.7853981633974483
EOF

Where spole and npole are integers from the range of 0 to 3 inclusive and represent the positions of the north polar
and south polar squares.

Output of above command:

0 0.7853981633974483 0.00 41.94

6.12 What options does PROJ allow for the shape of the Earth
(geodesy)?

See https://github.com/OSGeo/proj.4/blob/5.0/src/pj_ellps.c for possible ellipse options. For example, putting
+ellps=WGS84 uses the WGS84 Earth shape.

6.13 What if I want a spherical Earth?

Use +ellps=sphere. See https://github.com/OSGeo/proj.4/blob/5.0/src/pj_ellps.c for the radius used in this case.

6.14 How do I change the radius of the Earth? How do I use PROJ for
work on Mars?

You can supply explicit values for the semi minor and semi major axes instead of using the symbolic “sphere” value.
Eg, if the radius were 2000000m:

+proj=laea +lon_0=-40.000000 +lat_0=74.000000 +x_0=1000000 +y_0=1700000 +a=2000000
→˓+b=2000000"

142 Chapter 6. FAQ

https://github.com/OSGeo/proj.4/blob/5.0/src/pj_ellps.c
https://github.com/OSGeo/proj.4/blob/5.0/src/pj_ellps.c

PROJ.4 Documentation, Release 5.0.1

6.15 How do I do False Eastings and False Northings?

Use +x_0 and +y_0 in the projection string.

6.15. How do I do False Eastings and False Northings? 143

PROJ.4 Documentation, Release 5.0.1

144 Chapter 6. FAQ

CHAPTER

SEVEN

CONTRIBUTING

PROJ has a wide and varied user base. Some are highly skilled geodesists with a deep knowledge of map projections
and reference systems, some are GIS software developers and others are GIS users. All users, regardless of the
profession or skill level, has the ability to contribute to PROJ. Here’s a few suggestion on how:

• Help PROJ-users that is less experienced than yourself.

• Write a bug report

• Request a new feature

• Write documentation for your favorite map projection

• Fix a bug

• Implement a new feature

In the following sections you can find some guidelines on how to contribute. As PROJ is managed on GitHub most
contributions require that you have a GitHub account. Familiarity with issues and the GitHub Flow is an advantage.

7.1 Help a fellow PROJ user

The main forum for support for PROJ is the mailing list. You can subscribe to the mailing list here and read the archive
here.

If you have questions about the usage of PROJ the mailing list is also the place to go. Please do not use the GitHub
issue tracker as a support forum. Your question is much more likely to be answered on the mailing list, as many more
people follow that than the issue tracker.

7.2 Adding bug reports

Bug reports are handled in the issue tracker on PROJ’s home on GitHub. Writing a good bug report is not easy. But
fixing a poorly documented bug is not easy either, so please put in the effort it takes to create a thorough bug report.

A good bug report includes at least:

• A title that quickly explains the problem

• A description of the problem and how it can be reproduced

• Version of PROJ being used

• Version numbers of any other relevant software being used, e.g. operating system

• A description of what already has been done to solve the problem

145

https://guides.github.com/features/issues/
https://guides.github.com/introduction/flow/
http://lists.maptools.org/mailman/listinfo/proj
http://lists.maptools.org/pipermail/proj/
https://github.com/OSGeo/proj.4/issues

PROJ.4 Documentation, Release 5.0.1

The more information that is given up front, the more likely it is that a developer will find interest in solving the
problem. You will probably get follow-up questions after submitting a bug report. Please answer them in a timely
manner if you have an interest in getting the issue solved.

Finally, please only submit bug reports that are actually related to PROJ. If the issue materializes in software that uses
PROJ it is likely a problem with that particular software. Make sure that it actually is a PROJ problem before you
submit an issue. If you can reproduce the problem only by using tools from PROJ it is definitely a problem with PROJ.

7.3 Feature requests

Got an idea for a new feature in PROJ? Submit a thorough description of the new feature in the issue tracker. Please
include any technical documents that can help the developer make the new feature a reality. An example of this could
be a publicly available academic paper that describes a new projection. Also, including a numerical test case will make
it much easier to verify that an implementation of your requested feature actually works as you expect.

Note that not all feature requests are accepted.

7.4 Write documentation

PROJ is in dire need of better documentation. Any contributiions of documentation are greatly appreaciated. The PROJ
documentation is available on proj4.org. The website is generated with Sphinx. Contributions to the documentation
should be made as Pull Requests on GitHub.

If you intend to document one of PROJ’s supported projections please use the Mercator projection as a template.

7.5 Code contributions

Code contributions can be either bug fixes or new features. The process is the same for both, so they will be discussed
together in this section.

7.5.1 Making Changes

• Create a topic branch from where you want to base your work.

• You usually should base your topic branch off of the master branch.

• To quickly create a topic branch: git checkout -b my-topic-branch

• Make commits of logical units.

• Check for unnecessary whitespace with git diff --check before committing.

• Make sure your commit messages are in the proper format.

• Make sure you have added the necessary tests for your changes.

• Make sure that all tests pass

146 Chapter 7. Contributing

https://github.com/OSGeo/proj.4/issues
ttp://proj4.org
http://www.sphinx-doc.org/en/stable/
https://github.com/OSGeo/proj.4/pulls
http://proj4.org/projections/merc.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

PROJ.4 Documentation, Release 5.0.1

7.5.2 Submitting Changes

• Push your changes to a topic branch in your fork of the repository.

• Submit a pull request to the PROJ repository in the OSGeo organization.

• If your pull request fixes/references an issue, include that issue number in the pull request. For example:

Wiz the bang

Fixes #123.

• PROJ developers will look at your patch and take an appropriate action.

7.5.3 Coding conventions

Programming language

PROJ is developed strictly in ANSI C 89.

Coding style

We don’t enforce any particular coding style, but please try to keep it as simple as possible. If improving existing
code, please try to conform with the style of the locally surrounding code.

Whitespace

Throughout the PROJ code base you will see differing whitespace use. The general rule is to keep whitespace in
whatever form it is in the file you are currently editing. If the file has a mix of tabs and space please convert the tabs
to space in a separate commit before making any other changes. This makes it a lot easier to see the changes in diffs
when evaulating the changed code. New files should use spaces as whitespace.

File names

Files in which projections are implemented are prefixed with an upper-case PJ_ and most other files are prefixed with
lower-case pj_. Some file deviate from this pattern, most of them dates back to the very early releases of PROJ. New
contributions should follow the pj-prefix pattern. Unless there are obvious reasons not to.

7.5.4 Legalese

Commiters are the front line gatekeepers to keep the code base clear of improperly contributed code. It is important to
the PROJ users, developers and the OSGeo foundation to avoid contributing any code to the project without it being
clearly licensed under the project license.

Generally speaking the key issues are that those providing code to be included in the repository understand that the
code will be released under the MIT/X license, and that the person providing the code has the right to contribute the
code. For the commiter themselves understanding about the license is hopefully clear. For other contributors, the
commiter should verify the understanding unless the commiter is very comfortable that the contributor understands
the license (for instance frequent contributors).

If the contribution was developed on behalf of an employer (on work time, as part of a work project, etc) then it is
important that an appropriate representative of the employer understand that the code will be contributed under the
MIT/X license. The arrangement should be cleared with an authorized supervisor/manager, etc.

7.5. Code contributions 147

PROJ.4 Documentation, Release 5.0.1

The code should be developed by the contributor, or the code should be from a source which can be rightfully con-
tributed such as from the public domain, or from an open source project under a compatible license.

All unusual situations need to be discussed and/or documented.

Commiters should adhere to the following guidelines, and may be personally legally liable for improperly contributing
code to the source repository:

• Make sure the contributor (and possibly employer) is aware of the contribution terms.

• Code coming from a source other than the contributor (such as adapted from another project) should be clearly
marked as to the original source, copyright holders, license terms and so forth. This information can be in the file
headers, but should also be added to the project licensing file if not exactly matching normal project licensing
(COPYING).

• Existing copyright headers and license text should never be stripped from a file. If a copyright holder wishes
to give up copyright they must do so in writing to the foundation before copyright messages are removed. If
license terms are changed it has to be by agreement (written in email is ok) of the copyright holders.

• Code with licenses requiring credit, or disclosure to users should be added to COPYING.

• When substantial contributions are added to a file (such as substantial patches) the author/contributor should be
added to the list of copyright holders for the file.

• If there is uncertainty about whether a change is proper to contribute to the code base, please seek more infor-
mation from the project steering committee, or the foundation legal counsel.

7.6 Additional Resources

• General GitHub documentation

• GitHub pull request documentation

7.7 Acknowledgements

The code contribution section of this CONTRIBUTING file is inspired by PDAL’s and the legalese section is modified
from GDAL contributer guidelines

148 Chapter 7. Contributing

http://help.github.com/
https://help.github.com/articles/about-pull-requests/
https://github.com/PDAL/PDAL/blob/master/CONTRIBUTING.md
https://trac.osgeo.org/gdal/wiki/rfc3_commiters

CHAPTER

EIGHT

DOWNLOAD

8.1 Release Notes

• NEWS

8.2 Current Release

• 2018-04-01 proj-5.0.1.tar.gz (md5)

• 2018-03-01 proj-datumgrid-1.7.zip

• 2018-03-01 proj-datumgrid-europe-1.0.zip

• 2018-03-01 proj-datumgrid-north-america-1.0.zip

• 2018-03-01 proj-datumgrid-oceania-1.0.zip

8.3 Past Releases

• 2018-03-01 proj-5.0.0.tar.gz

• 2016-09-02 proj-4.9.3.tar.gz

• 2015-09-13 proj-4.9.2.tar.gz

• 2015-03-04 proj-4.9.1.tar.gz

• 2016-09-11 proj-datumgrid-1.6.zip

8.4 Binaries

8.4.1 Linux

• RedHat RPMs

• SUSE

• Debian

• pkgsrc

• Delphi

149

https://github.com/OSGeo/proj.4/blob/5.0/NEWS
http://download.osgeo.org/proj/proj-5.0.1.tar.gz
http://download.osgeo.org/proj/proj-5.0.1.tar.gz.md5
http://download.osgeo.org/proj/proj-datumgrid-1.7.zip
http://download.osgeo.org/proj/proj-datumgrid-europe-1.0.zip
http://download.osgeo.org/proj/proj-datumgrid-north-america-1.0.zip
http://download.osgeo.org/proj/proj-datumgrid-oceania-1.0.zip
http://download.osgeo.org/proj/proj-5.0.0.tar.gz
http://download.osgeo.org/proj/proj-4.9.3.tar.gz
http://download.osgeo.org/proj/proj-4.9.2.tar.gz
http://download.osgeo.org/proj/proj-4.9.1.tar.gz
http://download.osgeo.org/proj/proj-datumgrid-1.6.zip
http://yum.postgresql.org
http://download.opensuse.org/repositories/Application:/Geo/openSUSEApplication:GeoRepository
http://packages.debian.org/proj
http://pkgsrc.se/misc/projpkgsrcpackage
http://www.triplexware.huckfinn.de/geogfix.html#proj

PROJ.4 Documentation, Release 5.0.1

8.4.2 Docker

A Docker image with just PROJ binaries and a full compliment of grid shift files is available on DockerHub:

8.4.3 Windows

• OSGeo4W contains 32-bit and 64-bit Windows binaries, including support for many grids.

150 Chapter 8. Download

https://docker.org
https://hub.docker.com/r/osgeo/proj.4/
https://trac.osgeo.org/osgeo4w/

CHAPTER

NINE

GLOSSARY

Pseudocylindrical Projection Pseudocylindrical projections have the mathematical characteristics of

𝑥 = 𝑓(𝜆, 𝜑)

𝑦 = 𝑔(𝜑)

where the parallels of latitude are straight lines, like cylindrical projections, but the meridians are curved toward
the center as they depart from the equator. This is an effort to minimize the distortion of the polar regions
inherent in the cylindrical projections.

Pseudocylindrical projections are almost exclusively used for small scale global displays and, except for the
Sinusoidal projection, only derived for a spherical Earth. Because of the basic definition none of the pseudo-
cylindrical projections are conformal but many are equal area.

To further reduce distortion, pseudocylindrical are often presented in interrupted form that are made by join-
ing several regions with appropriate central meridians and false easting and clipping boundaries. Interrupted
Homolosine constructions are suited for showing respective global land and oceanic regions, for example. To
reduce the lateral size of the map, some uses remove an irregular, North-South strip of the mid-Atlantic region
so that the western tip of Africa is plotted north of the eastern tip of South America.

151

PROJ.4 Documentation, Release 5.0.1

152 Chapter 9. Glossary

CHAPTER

TEN

LICENSE

Author Frank Warmerdam

Contact warmerdam@pobox.com

Date 2001

PROJ.4 has been placed under an MIT license. I believe this to be as close as possible to public domain while satisfying
those who say that a copyright notice is required in some countries. The COPYING file read as follows:

All source, data files and other contents of the PROJ.4 package are available under the following terms. Note that the
PROJ 4.3 and earlier was “public domain” as is common with US government work, but apparently this is not a well
defined legal term in many countries. I am placing everything under the following MIT style license because I believe
it is effectively the same as public domain, allowing anyone to use the code as they wish, including making proprietary
derivatives.

Though I have put my own name as copyright holder, I don’t mean to imply I did the work. Essentially all work was
done by Gerald Evenden.

Copyright (c) 2000, Frank Warmerdam

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The PROJ mailing list can be found at http://lists.maptools.org/mailman/listinfo/proj

153

mailto:warmerdam@pobox.com
http://lists.maptools.org/mailman/listinfo/proj

PROJ.4 Documentation, Release 5.0.1

154 Chapter 10. License

BIBLIOGRAPHY

[AltamimiEtAl2002] Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000: A new release of the Interna-
tional Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214,
doi:10.1029/2001JB000561.

[Bessel1825] F. W. Bessel, 1825, The calculation of longitude and latitude from geodesic measurements, Astron.
Nachr. 331(8), 852–861 (2010), translated by C. F. F. Karney and R. E. Deakin.

[CalabrettaGreisen2002] M. Calabretta and E. Greisen, 2002, “Representations of celestial coordinates in FITS”.
Astronomy & Astrophysics 395, 3, 1077–1122.

[ChanONeil1975] F. Chan and E. M. O’Neill, 1975, “Feasibility Study of a Quadrilateralized Spherical Cube Earth
Data Base”, Tech. Rep. EPRF 2-75 (CSC), Environmental Prediction Research Facility.

[Danielsen1989] J. Danielsen, 1989, The area under the geodesic, Survey Review 30(232), 61–66.

[Deakin2004] R.E. Deakin, 2004, The Standard and Abridged Molodensky Coordinate Transformation Formulae.

[EberHewitt1979] L. E. Eber and R.P. Hewitt, 1979, Conversion algorithms for the CalCOFI station grid, California
Cooperative Oceanic Fisheries Investigations Reports 20:135-137.

[Evenden1995] G. I. Evenden, 1995, Cartograpic Projection Procedures for the UNIX Environment - A User’s Man-
ual.

[Evenden2005] G. I. Evenden, 2005, libproj4: A Comprehensive Library of Cartographic Projection Functions (Pre-
liminary Draft).

[EversKnudsen2017] K. Evers and T. Knudsen, 2017, Transformation pipelines for PROJ.4, FIG Working Week 2017
Proceedings.

[GeodesicBib] A geodesic bibliography.

[GeodesicWiki] The wikipedia page, Geodesics on an ellipsoid.

[Häkli2016] P. Häkli, M. Lidberg, L. Jivall, et al, 2016, The NKG2008 GPS Campaign - final transformation results
and a new common Nordic reference frame, Journal of Geodetic Science, 6(1).

[Helmert1880] F. R. Helmert, 1880, Mathematical and Physical Theories of Higher Geodesy, Vol 1, (Teubner,
Leipzig), Chaps. 5–7.

[Karney2011] C. F. F. Karney, 2011, Geodesics on an ellipsoid of revolution; errata.

[Karney2013] C. F. F. Karney, 2013, Algorithms for geodesics, J. Geodesy 87(1) 43–55; addenda.

[Komsta2016] L. Komsta, 2016, ATPOL geobotanical grid revisited - a proposal of coordinate conversion algorithms,
Annales UMCS Sectio E Agricultura 71(1), 31–37.

[LambersKolb2012] M. Lambers and A. Kolb, 2012, “Ellipsoidal Cube Maps for Accurate Rendering of Planetary-
Scale Terrain Data”, Proc. Pacific Graphics (Short Papers).

155

http://www.agu.org/pubs/crossref/2002/2001JB000561.shtml
https://arxiv.org/abs/0908.1824
https://doi.org/10.1179/003962689791474267
http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf
http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf
https://github.com/OSGeo/PROJ/blob/5.0/docs/old/proj_4_3_12.pdf
https://github.com/OSGeo/PROJ/blob/5.0/docs/old/proj_4_3_12.pdf
https://github.com/OSGeo/PROJ/blob/5.0/docs/old/libproj.pdf
https://github.com/OSGeo/PROJ/blob/5.0/docs/old/libproj.pdf
http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf
https://geographiclib.sourceforge.io/geodesic-papers/biblio.html
https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
https://doi.org/10.1515/jogs-2016-0001
https://doi.org/10.1515/jogs-2016-0001
https://doi.org/10.5281/zenodo.32050
https://arxiv.org/abs/1102.1215v1
https://geographiclib.sourceforge.io/geod-addenda.html#geod-errata
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
http://wydawnictwo.up.lublin.pl/annales/Agricultura/2016/1/03.pdf

PROJ.4 Documentation, Release 5.0.1

[ONeilLaubscher1976] E. M. O’Neill and R. E. Laubscher, 1976, “Extended Studies of a Quadrilateralized Spherical
Cube Earth Data Base”, Tech. Rep. NEPRF 3-76 (CSC), Naval Environmental Prediction Research Facility.

[Snyder1987] J. P. Snyder, 1987, Map Projections - A Working Manual. U.S. Geological Survey professional paper
1395.

[Snyder1993] J. P. Snyder, 1993, Flattening the Earth, Chicago and London, The University of Chicago press.

[Steers1970] J. A. Steers, 1970, An introduction to the study of map projections (15th ed.), London Univ. Press, p.
229.

[Verey2017] M. Verey, 2017, Theoretical analysis and practical consequences of adopting an ATPOL grid model as
a conical projection, defining the conversion of plane coordinates to the WGS-84 ellipsoid, Fragmenta
Floristica et Geobotanica Polonica (preprint submitted).

[Vincenty1975] T. Vincenty, 1975, Direct and inverse solutions of geodesics on the ellipsoid with application of nested
equations, Survey Review 23(176), 88–93.

[WeberMoore2013] E. D. Weber and T.J. Moore, 2013, Corrected Conversion Algorithms For The CalCOFI Station
Grid And Their Implementation In Several Computer Languages, California Cooperative Oceanic Fisheries
Investigations Reports 54.

[Zajac1978] A. Zajac, 1978, “Atlas of distribution of vascular plants in Poland (ATPOL)”, Taxon 27(5/6), 481–484.

156 Bibliography

https://pubs.er.usgs.gov/publication/pp1395
http://www.botany.pl/atpol/Siatka%20ATPOL%20w%20analitycznym%20ujeciu.pdf
http://www.botany.pl/atpol/Siatka%20ATPOL%20w%20analitycznym%20ujeciu.pdf
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf
http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf

INDEX

C
cct, 7

E
environment variable

PROJ_DEBUG, 21
PROJ_LIB, 20, 21, 120

P
PJ (C type), 110
PJ_AREA (C type), 110
PJ_CONTEXT (C type), 110
PJ_COORD (C type), 114
PJ_COORD.PJ_COORD.lp (C member), 114
PJ_COORD.PJ_COORD.lpz (C member), 114
PJ_COORD.PJ_COORD.lpzt (C member), 114
PJ_COORD.PJ_COORD.uv (C member), 114
PJ_COORD.PJ_COORD.uvw (C member), 114
PJ_COORD.PJ_COORD.uvwt (C member), 114
PJ_COORD.PJ_COORD.xy (C member), 114
PJ_COORD.PJ_COORD.xyz (C member), 114
PJ_COORD.PJ_COORD.xyzt (C member), 114
PJ_DIRECTION (C type), 110
PJ_DIRECTION.PJ_FWD (C member), 110
PJ_DIRECTION.PJ_IDENT (C member), 110
PJ_DIRECTION.PJ_INV (C member), 110
PJ_ELLPS (C type), 116
PJ_ELLPS.ell (C member), 116
PJ_ELLPS.id (C member), 116
PJ_ELLPS.major (C member), 116
PJ_ELLPS.name (C member), 116
PJ_FACTORS (C type), 115
PJ_FACTORS.PJ_FACTORS.angular_distortion

(C member), 115
PJ_FACTORS.PJ_FACTORS.areal_scale (C

member), 115
PJ_FACTORS.PJ_FACTORS.dx_dlam (C member),

115
PJ_FACTORS.PJ_FACTORS.dx_dphi (C member),

115

PJ_FACTORS.PJ_FACTORS.dy_dlam (C member),
115

PJ_FACTORS.PJ_FACTORS.dy_dphi (C member),
115

PJ_FACTORS.PJ_FACTORS.meridian_convergence
(C member), 115

PJ_FACTORS.PJ_FACTORS.meridian_parallel_angle
(C member), 115

PJ_FACTORS.PJ_FACTORS.meridional_scale
(C member), 115

PJ_FACTORS.PJ_FACTORS.parallel_scale (C
member), 115

PJ_FACTORS.PJ_FACTORS.tissot_semimajor
(C member), 115

PJ_FACTORS.PJ_FACTORS.tissot_semiminor
(C member), 115

PJ_GRID_INFO (C type), 118
PJ_GRID_INFO.PJ_GRID_INFO (C member), 118
PJ_GRID_INFO.PJ_GRID_INFO.cs_lat (C mem-

ber), 118
PJ_GRID_INFO.PJ_GRID_INFO.cs_lon (C mem-

ber), 118
PJ_GRID_INFO.PJ_GRID_INFO.lowerleft (C

member), 118
PJ_GRID_INFO.PJ_GRID_INFO.n_lat (C mem-

ber), 118
PJ_GRID_INFO.PJ_GRID_INFO.n_lon (C mem-

ber), 118
PJ_GRID_INFO.PJ_GRID_INFO.upperright (C

member), 118
PJ_INFO (C type), 117
PJ_INFO.PJ_INFO.major (C member), 117
PJ_INFO.PJ_INFO.minor (C member), 117
PJ_INFO.PJ_INFO.patch (C member), 117
PJ_INFO.PJ_INFO.release (C member), 117
PJ_INFO.PJ_INFO.searchpath (C member), 117
PJ_INFO.PJ_INFO.version (C member), 117
PJ_INIT_INFO (C type), 119
PJ_INIT_INFO.PJ_INIT_INFO.lastupdate (C

member), 119
PJ_LP (C type), 111

157

PROJ.4 Documentation, Release 5.0.1

PJ_LP.PJ_LP.lam (C member), 111
PJ_LP.PJ_LP.phi (C member), 111
PJ_LPZ (C type), 111
PJ_LPZ.PJ_LPZ.lam (C member), 111
PJ_LPZ.PJ_LPZ.phi (C member), 111
PJ_LPZ.PJ_LPZ.z (C member), 111
PJ_LPZT (C type), 112
PJ_LPZT.PJ_LPZT.lam (C member), 112
PJ_LPZT.PJ_LPZT.phi (C member), 112
PJ_LPZT.PJ_LPZT.t (C member), 112
PJ_LPZT.PJ_LPZT.z (C member), 112
PJ_OPERATIONS (C type), 116
PJ_OPERATIONS.id (C member), 116
PJ_OPERATIONS.op (C member), 116
PJ_OPK (C type), 113
PJ_OPK.PJ_OPK.k (C member), 113
PJ_OPK.PJ_OPK.o (C member), 113
PJ_OPK.PJ_OPK.p (C member), 113
PJ_PRIME_MERIDIANS (C type), 117
PJ_PRIME_MERIDIANS.def (C member), 117
PJ_PRIME_MERIDIANS.id (C member), 117
PJ_PROJ_INFO (C type), 117
PJ_PROJ_INFO.PJ_PROJ_INFO.accuracy (C

member), 118
PJ_PROJ_INFO.PJ_PROJ_INFO.definition (C

member), 118
PJ_PROJ_INFO.PJ_PROJ_INFO.description

(C member), 118
PJ_PROJ_INFO.PJ_PROJ_INFO.has_inverse

(C member), 118
PJ_PROJ_INFO.PJ_PROJ_INFO.id (C member),

118
PJ_UNITS (C type), 116
PJ_UNITS.factor (C member), 116
PJ_UNITS.id (C member), 116
PJ_UNITS.name (C member), 116
PJ_UNITS.to_meter (C member), 116
PJ_UV (C type), 111
PJ_UV.PJ_UV.u (C member), 111
PJ_UV.PJ_UV.v (C member), 111
PJ_UVW (C type), 112
PJ_UVW.PJ_UVW.u (C member), 112
PJ_UVW.PJ_UVW.v (C member), 112
PJ_UVW.PJ_UVW.w (C member), 112
PJ_UVWT (C type), 113
PJ_UVWT.PJ_UVWT.e (C member), 113
PJ_UVWT.PJ_UVWT.n (C member), 113
PJ_UVWT.PJ_UVWT.t (C member), 113
PJ_UVWT.PJ_UVWT.w (C member), 113
PJ_XY (C type), 111
PJ_XY.PJ_XY.x (C member), 111
PJ_XY.PJ_XY.y (C member), 111
PJ_XYZ (C type), 112
PJ_XYZ.PJ_XYZ.x (C member), 112

PJ_XYZ.PJ_XYZ.y (C member), 112
PJ_XYZ.PJ_XYZ.z (C member), 112
PJ_XYZT (C type), 112
PJ_XYZT.PJ_XYZT.t (C member), 113
PJ_XYZT.PJ_XYZT.x (C member), 113
PJ_XYZT.PJ_XYZT.y (C member), 113
PJ_XYZT.PJ_XYZT.z (C member), 113
proj, 4
proj_angular_input (C function), 127
proj_angular_output (C function), 127
proj_context_create (C function), 119
proj_context_destroy (C function), 119
proj_coord (C function), 126
proj_create (C function), 119
proj_create_argv (C function), 120
proj_create_crs_to_crs (C function), 120
proj_destroy (C function), 120
proj_dmstor (C function), 127
proj_errno (C function), 123
proj_errno_reset (C function), 123
proj_errno_restore (C function), 123
proj_errno_set (C function), 123
proj_factors (C function), 126
proj_geocentric_latitude (C function), 127
proj_grid_info (C function), 124
proj_info (C function), 124
proj_init_info (C function), 124
PROJ_LIB, 20, 21, 120
proj_list_ellps (C function), 124
proj_list_operations (C function), 124
proj_list_prime_meridians (C function), 124
proj_list_units (C function), 124
proj_lp_dist (C function), 125
proj_pj_info (C function), 124
proj_roundtrip (C function), 126
proj_rtodms (C function), 127
proj_todeg (C function), 127
proj_torad (C function), 126
proj_trans (C function), 121
proj_trans_array (C function), 122
proj_trans_generic (C function), 121
proj_xy_dist (C function), 125
proj_xyz_dist (C function), 125
Pseudocylindrical Projection, 151

158 Index

	Contents
	Using PROJ
	Quick start
	Applications
	proj
	cct
	cs2cs
	geod

	Cartographic projection
	Units
	False Easting/Northing
	Longitude Wrapping
	Prime Meridian
	Axis orientation

	Geodetic transformation
	Transformation pipelines
	cs2cs paradigm
	Grid Based Datum Adjustments

	Environment variables

	Coordinate operations
	Projections
	Azimuthal Equidistant
	Airy
	Aitoff
	Mod. Stererographics of Alaska
	Apian Globular I
	August Epicycloidal
	Bacon Globular
	Bipolar conic of western hemisphere
	Boggs Eumorphic
	Bonne (Werner lat_1=90)
	Cal Coop Ocean Fish Invest Lines/Stations
	Cassini (Cassini-Soldner)
	Central Cylindrical
	Central Conic
	Equal Area Cylindrical
	Chamberlin Trimetric
	Collignon
	Craster Parabolic (Putnins P4)
	Denoyer Semi-Elliptical
	Eckert I
	Eckert II
	Eckert III
	Eckert IV
	Eckert V
	Eckert VI
	Equidistant Cylindrical (Plate Carrée)
	Equidistant Conic
	Euler
	Extended Transverse Mercator
	Fahey
	Foucaut
	Foucaut Sinusoidal
	Gall (Gall Stereographic)
	Geostationary Satellite View
	Ginsburg VIII (TsNIIGAiK)
	General Sinusoidal Series
	Gnomonic
	Goode Homolosine
	Mod. Stererographics of 48 U.S.
	Mod. Stererographics of 50 U.S.
	Hammer & Eckert-Greifendorff
	Hatano Asymmetrical Equal Area
	HEALPix
	rHEALPix
	Interrupted Goode Homolosine
	International Map of the World Polyconic
	Icosahedral Snyder Equal Area
	Kavraisky V
	Kavraisky VII
	Krovak
	Laborde
	Lambert Azimuthal Equal Area
	Lagrange
	Larrivee
	Laskowski
	Lambert Conformal Conic
	Lambert Conformal Conic Alternative
	Lambert Equal Area Conic
	Lee Oblated Stereographic
	Loximuthal
	Space oblique for LANDSAT
	McBryde-Thomas Flat-Polar Sine (No. 1)
	McBryde-Thomas Flat-Pole Sine (No. 2)
	McBride-Thomas Flat-Polar Parabolic
	McBryde-Thomas Flat-Polar Quartic
	McBryde-Thomas Flat-Polar Sinusoidal
	Mercator
	Miller Oblated Stereographic
	Miller Cylindrical
	Mollweide
	Murdoch I
	Murdoch II
	Murdoch III
	Natural Earth
	Nell
	Nell-Hammer
	Nicolosi Globular
	Near-sided perspective
	New Zealand Map Grid
	General Oblique Transformation
	Oblique Cylindrical Equal Area
	Oblated Equal Area
	Oblique Mercator
	Ortelius Oval
	Orthographic
	Perspective Conic
	Polyconic (American)
	Putnins P1
	Putnins P2
	Putnins P3
	Putnins P3’
	Putnins P4’
	Putnins P5
	Putnins P5’
	Putnins P6
	Putnins P6’
	Quartic Authalic
	Quadrilateralized Spherical Cube
	Robinson
	Roussilhe Stereographic
	Rectangular Polyconic
	Sinusoidal (Sanson-Flamsteed)
	Swiss. Obl. Mercator
	Stereographic
	Oblique Stereographic Alternative
	Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)
	Transverse Central Cylindrical
	Transverse Cylindrical Equal Area
	Tissot
	Transverse Mercator
	Two Point Equidistant
	Tilted perspective
	Universal Polar Stereographic
	Urmaev V
	Urmaev Flat-Polar Sinusoidal
	Universal Transverse Mercator (UTM)
	van der Grinten (I)
	van der Grinten II
	van der Grinten III
	van der Grinten IV
	Vitkovsky I
	Wagner I (Kavraisky VI)
	Wagner II
	Wagner III
	Wagner IV
	Wagner V
	Wagner VI
	Wagner VII
	Werenskiold I
	Winkel I
	Winkel II
	Winkel Tripel

	Conversions
	Axis swap
	Cartesian to geodetic conversion
	Lat/long (Geodetic)
	Lat/long (Geodetic alias)
	Unit conversion

	Transformations
	Kinematic datum shifting utilizing a deformation model
	Helmert transform
	Molodensky transform
	Horizontal grid shift
	Vertical grid shift

	The pipeline operator
	Rules for pipelines

	Resource files
	External resources
	Transformation grids
	Free grids
	Non-Free Grids
	HARN
	HTDP

	Init files
	The defaults file

	Geodesic calculations
	Introduction
	Solution of geodesic problems
	Additional properties
	Multiple shortest geodesics
	Background

	Development
	Quick start
	Transformations
	Error handling
	Threads
	Key Thread Safety Issues
	projCtx
	src/multistresstest.c

	Reference
	Data types
	Functions
	Deprecated API

	Using PROJ in CMake projects
	Language bindings
	Python
	Ruby
	TCL
	MySQL
	Excel
	Visual Basic

	Version 4 to 5 API Migration
	Background
	Code example
	Function mapping from old to new API

	FAQ
	Where can I find the list of projections and their arguments?
	How do I build/configure PROJ to support datum shifting?
	How do I debug problems with NAD27/NAD83 datum shifting?
	How do I use EPSG coordinate system codes with PROJ?
	How do I use 3 parameter and 7 parameter datum shifting
	Does PROJ work in different international numeric locales?
	Changing Ellipsoid / Why can’t I convert from WGS84 to Google Earth / Virtual Globe Mercator?
	Why do I get different results with 4.5.0 and 4.6.0?
	How do I calculate distances/directions on the surface of the earth?
	What is the HEALPix projection and how can I use it?
	What is the rHEALPix projection and how can I use it?
	What options does PROJ allow for the shape of the Earth (geodesy)?
	What if I want a spherical Earth?
	How do I change the radius of the Earth? How do I use PROJ for work on Mars?
	How do I do False Eastings and False Northings?

	Contributing
	Help a fellow PROJ user
	Adding bug reports
	Feature requests
	Write documentation
	Code contributions
	Making Changes
	Submitting Changes
	Coding conventions
	Legalese

	Additional Resources
	Acknowledgements

	Download
	Release Notes
	Current Release
	Past Releases
	Binaries
	Linux
	Docker
	Windows

	Glossary
	License
	Bibliography
	Index

